& OPEN ACCES

GRS Journal of Multidisciplinary Research and Studies
Abbriviate Tittle- GRS J Mul Res Stud

ISSN (Online)- 3049-0561
https://grspublisher.com/journal-details/GRS)J

Vol-2, Iss-3 (Mar- 2025)

Towards Solving NP-Complete and other Hard Problems Efficiently in Practice

Mircea-Adrian Digulescu
University of Bucharest
*Corresponding Author : Mircea-Adrian Digulescu
“University of Bucharest”
Received: 28.02.2025

Accepted: 10.03.2025 Published: 14.03.2025

Abstract: Until now, Computer Scientists have concerned themselves with identifying efficient algorithms for solving the general case of
some problem — that is finding one which performs well when the size of the input tends to infinity. However, this is the precise opposite of
what is actually needed in practice. Effectively solving some real-world problem entails identifying an algorithm which works well for all
(or some) inputs up to some fixed upper bound dictated by the concrete practical application. Such an algorithm may be distinct from the
one which solves the general case. Furthermore, a general case algorithm may not exist at all or finding it might prove painstakingly hard for
the human mind. Fortunately, in practice all that is needed is one which works on the finite cases involved in the real world situations, not
one which can, unaltered, solve any input correctly.

In this paper, we first introduce a theoretical framework for reasoning about finite algorithmics. It allows familiar concepts such as
asymptotic complexity to be adapted to the case where the input size is bounded from above. We also present some elementary results
within this theory. Secondly, we present a generic approach for automatically discovering an adequate algorithm for the finite case of some
hard problem — if one exists. Thirdly, we argue why we expect the finite case of hard problems to be easier than the general case. Fourthly,
we present some relevant ideas specific to three hard problems, namely 3CNF-SAT, String Compression and Integer Factorization. Fifthly,
we discuss the significance of the theory and methods introduced in this paper — noting among other things that they can be used to
automatically determine that either (i) P = NP, (ii) P <> NP or (iii) we don’t really care about the distinction for practical purposes. Finally,
we present four directions for immediate further research and formulate an open question which, when answered will, for all practical
purposes, decide P=NP.

Enhancing the way Computer Scientists reason about hard problems is ultimately the single most important contribution we claim for this

paper.

Keywords: P equals NP, Finite Algorithmics, Theoretical Computer Science, Complexity Theory.

1. Introduction

Until now, we as Computer Scientists have almost exclusively
concerned ourselves with finding algorithms to solve interesting
problems in the general case. That is to identify a single algorithm
— some fixed finite sequence of lines of code — which solves said
problem for any input. We then reason about upper time and space
bounds for such an algorithm in terms of asymptotical complexity
with regard to the input size in bits (or some general unbounded
parameter which describes the difficulty of the input). Even when
we are unable to find an algorithm suitable to our desires, we can
reason about the constraints to which such — if it exists — must
conform, in terms of lower-bounds. Furthermore, we can go on and
analyze the relation between the relative hardness of problems —
even those for which we do not yet have a satisfactory solution - by
clustering them into complexity classes and then proceeding to
examine the relationships between these. In 2005 there were about
417 complexity classes in the Complexity Zoo [1]. As of 2019, the
number has grown to about 544 classes currently being
investigated by humanity. However, they all pertain to solving
some hard problem correctly and efficiently for all inputs, no
matter how large.

The approach of solving a problem with which we are concerned in
practice — of bounded input size - by reducing it to a potentially
harder problem — of unbounded input size — and using our human
creativity to find an asymptotically efficient algorithm for the latter
has proven enormously successful over the past century. From

pattern-matching, to bipartite (and then general) matching, from
shortest paths in a graph to maximum flows, humanity has seen
enormous success in solving practical problems via this approach.
However, ever since its inception and increasingly pronounced
during recent decades, the method has started to show its
limitations.

A large number of problems, including SAT and all NP-Complete
ones, integer factorization, solving stochastic games, all PSPACE-
Complete problems and all problems in EXPTIME and above, as
well as some mysterious ones like breaking AES encryption do not
have any known efficient algorithm despite decades of research.
These add to problems which are known not to admit any
algorithm at all which solves them in the general case: like
Kolmogorov complexity or solutions to Busy Beaver Game. Some
of the others are suspected to not to admit such, but wheatear this is
actually true or not is yet known.

Nevertheless, a large number of instances of many of such
problems are actually solvable in practice. Modern SAT Solvers
[2] can solve problems over up to millions of variables and a large
number of those over tens of thousands [3][4]. There is no
presently known method of deriving an instance of a SAT problem
which is hard to solve by any heuristic (although finding easy cases
of arbitrary size can be done). In fact, not even a theoretical
framework exists to reason about such cases, despite numerous
published empirical studies. The incomputable Busy Beaver
problem itself has been solved for the two symbol game, up to 4

14| Page

https://grspublisher.com/journal-details/GRSJ

states inclusively [5].

There is an apparent discrepancy between how hard a problem
seems to be in the general case (at least for the human mind) and
how easy it is for at least some practical cases, which are the ones
of actual concern to us. As such, it is time to turn our attention to
studying actual instances of cases of hard problems — in particular
those which might appear in practice (and are thus almost always
of bounded input size). Investigating these might sometimes lead to
efficient algorithms for all real-world needs, or even to the
discovery of the general case solution.

Until now, computer science theory has paid little to no attention to
finite algorithmics. The very foundational tool used to reason about
algorithms — asymptotic complexity of a function, works by
definition only for the limit to infinity. Under existing theory, all
practical instances of a problem — which almost always entail some
bounded input size — are trivially solvable in O(1). This includes
computation of non-computable functions, without inclusion of
proof of actual correctness.

In this paper we remedy this lacking of the current complexity
theory by introducing finite algorithmics. We also present some
noteworthy elementary results formulated under it.

As far as we know there is no theoretical prior work concerning
finite algorithmics, as we are just now introducing the field.

Results exists which can, in retrospect, be regarded as part of field
of finite algorithmics however. They can be found in the following
domains: Artificial Intelligence and Machine Learning (there most
problems solved have bounded input size by formulation),
Heuristic Solvers for NP-Complete Problems (such as SAT
Solvers) and to some extent Cryptography (since most cyphers
have fixed key and block sizes). Nevertheless, even within these
fields there has been to the best of our knowledge no systematic
effort to date to introduce a theory which would allow formal
reasoning about relative performance of various algorithms and
relationships between various classes of problems with regard to a
fixed upper bound on input size.

The study of the P/poly complexity class can be considered
tangential to this work. We will discuss its relationship with some
of the other complexity classes we introduce.

The rest of this paper is organized as follows.

In Section 3 we introduce the theory related to Finite Algorithmics
as follows. Section 3.1 contains basic definitions pertaining to
formulating computer science problems and solutions on the finite
case. In Section 3.2 we introduce definitions which allow us to
reason about natural functions restricted to a finite domain using
concepts analogous to those employed in general case asymptotic
theory. In Section 3.3 we present seven finite case complexity
classes and define a few related concepts important to describing
inherent difficulty within computer science problems. Section 3.4
formally introduces the problem of solving a computer science
problem (i.e. producing the source code of an acceptable
algorithm) and describes its inputs and outputs. Also in Section 3.4
we introduce a classification of existing general case computer
science problems based on their known or apparent difficulty.

In Section 4 we present some elementary but very important results
related to finite algorithmics, formulated within the theory we
introduced in Section 3. Section 4.1 deals with relationships
between finite complexity classes, both in relation to general case
complexity (Sections 4.1.1 and 4.1.2) and among themselves

(Section 4.1.3). In Section 4.2 we present a generic method for
solving any computer science problem on the finite case (Section
4.2.1) and also introduce some very important elementary results
pertaining to what performance guarantees can be attained for sure
for certain types of problems (Section 4.2.2). In Section 4.4 we
present further ideas which can be employed in the context of finite
algorithmics to speed-up the quest for a solution to three well-
known hard problems: 3CNF-SAT, String Compression
(Kolmogorov Complexity) and Integer Factorization (hard only for
a classical computer).

We use Section 4.3 to present 10 arguments which we consider
overwhelmingly convincing to prove the existence of value in the
study of finite algorithmics.

In Section 5 we discuss some clear implications of the results
presented in this paper, including on the way we as computer
science researchers ought to think about hard problems like P=NP.

In Section 6 we present four directions for immediate further
research, and pose a crucial open question, within the realm of
finite algorithmics. The answer to that open question can be used to
decide (and for most practical purposes prove) P=NP. Furthermore,
answering it can be done automatically (if but in a very long time
frame). The mere existence of such a questions opens up new
avenues in the quest for proofs in deciding P=NP.

Section 7 contains some brief Vitae of the author. Section 8 is
dedicated to Acknowledgments and statement of interest (none).

Finally, In Annex 1 we include some estimated upper bounds for
tractability for each finite complexity class, given existing
hardware.

2. Materials and methods

This paper contains results of theoretical reasoning based on the
author’s current knowledge of advances in complexity theory,
building of SAT Solvers and algorithms in general. Since it aims to
introduce a new subfield of computer science, namely finite
algorithmics, it stops short of providing experimental data as being
out of the current scope Obtaining such experimental data, based
on the methods presented here is of interest nevertheless and we,
the author, encourage fellow scientists to try them out in practice
and publish the findings Ultimately, the attractiveness of the field
in general steams partially from the prospect of being able to
enhance one’s creativity using computers to automate trial-and-
error. They can perform tasks such as eliminating obviously
unpromising alternatives several orders of magnitude faster than a
human.

3. Theory

We now proceed to introduce the required theory which enables
formal reasoning about finite cases of general computer science
problems.

Section 3.1 Introducing Finite Algorithmics

Definition 1 (Problem of restricted size)

Consider some problem Prob consisting of finding a proper
algorithm S which, for any given an input s of length |s| from the
universe possible inputs U <inclus in> {0,1}* produces some
output S(s) which is among the set of valid outputs for input s for
problem Prob.

We define Prob[nQ] as the problem of finding such an algorithm

15| Page

which produces desired output only when |s| <= k. Such an
algorithm can have undefined behavior elsewhere.

Example: SUBSUMJ1000] is the problem of finding an algorithm
which computes correctly wheatear a particular sum is attainable
by summing some or all of at most n0=1000 given integers.

Discussion: Note that the algorithm which is the answer to
Prob[n0] can be different for different n0-s. SUBSUM[1000] might
have a different algorithm than SUBSUM[1000000]. Also, solving
the original problem Prob entails providing an algorithm which
solves it for any input, regardless of the size — the same for all
sizes. Thus, Prob[n0] can be regarded as a 1-parameter function [to
include from N->{a,b,c,..}*], which, given some nO outputs a
string representing the desired algorithm in some chosen
programming language. Prob itself can be regarded as a parameter-
less function (or a constant) providing such.

Definition 2 (Problem of Exact Size)

We define Prob(n0) analogously to Prob[n0] to represent the
problem of finding a proper algorithm when the input size is
precisely n0.

We extend the notations of Definitions 1 and 2 to parameterized
complexity accordingly. Namely, when we reason about the
complexity of some algorithm not in terms of its input size, but in
terms of some parameter n (for example number of variables in a
3CNF-SAT problem instance) — which only bounds the input size
but is not exactly equal to it, the same notations apply replacing the
length |s| of the input with the definition of this parameter.

The definition of what constitutes a proper algorithm for a given
problem merits attention. For a particular family of computer
science problems (e.g. boolean formula satisfiability) a myriad of
constraints can be placed on either inputs (e.g. no more than 3
clauses per variable), outputs (e.g. should provide also a satisfiable
assignment if one exists), algorithm itself (should be no longer than
10 Mbytes) or its runtime behavior (e.g. space and time
complexity), in addition to the type of machine which will be
running it (e.g. a probabilistic computer, quantum computer) in
order to arrive at a particularization which is specific enough to
allow us to reason about it formally. Some constraints are more
interesting than others though.

Definition 3 (Full Problem Statement)

In order to specify the statement of a computer science problem
fully, we require the following to be included:

» Theoretical problem statement. This is a formal
description which specifies which particular outputs can
be considered correct for a certain input. Example: For
discrete logarithm we can consider an output correct if it
represents the actual discrete logarithm of the input.

» Type of machine used to solve it. This can be Turing-
equivalent, Probabilistic Turing-equivalent or Quantum
Turing-equivalent. If humanity discovers other types of
machines, this list can be expanded accordingly, without
losing validity of most results within this paper.

» Restriction on input size. This can be specified directly,
or via some parameter which constraints it. For the non-
finite case, this limit is taken to be +INF. We require that
this limit either be +INF or a natural number explicitly
given (not merely constrained).

» Restriction on output size. This involves setting some
constrains on the function which correlates the output of

the algorithm to size of the corresponding input.
Example: We require output be of polynomial size in the
input size.

» Restrictions on input universe. In addition to size
restrictions, we can require that the input satisfies some
additional constraints, limiting generality (e.g. there are
only 3 clauses per variable for a 3CNF-SAT instance, or
that it represents a satisfiable formula). These can be
included in 1. or not.

» Accuracy requirements. These specify how often and in
what way is the algorithm allowed to stray from the strict
correlation relationship between inputs and outputs
defined in 1.. For a decision problem, these can be
acceptable rates of false-positives and false-negatives
over all valid input pairs. They can be specified in
absolute terms (i.e. a natural number), or as a bound on
the fraction of such to some other quantity — for example
constraining Sensitivity and Specificity. For non-decision
problems, constrains on absolute or relative error can be
included here. Finally, sometimes different requirements
for different subsets of the input universe can be
formulated (e.g. in case a 3CNF-SAT formula has less
than 2 clauses per variable, we require 100% Sensitivity
and Specificity, but if it has more than we can settle for
99%).

» Proof Requirements. This specifies if the algorithm
must provide some sort of additional output which can be
used to construct a proof that it is indeed correct for the
respective input. For a 3CNF-SAT formula this can be a
satisfiable assignment, or a certificate of non-
satisfiability (do note for this particular example that not
all non-satisfiable 3CNF-SAT formulas may have non-
satisfiability certificates of polynomial size). We call any
such part of the output a certificate (of correctness).
Accuracy requirements can be placed on this part of the
output as well.

» Completeness Requirements. This specifies what kind
of behavior the algorithm is guaranteed to have over the
input universe. In particular, we say that it is complete if
it terminates with the required guarantees for all inputs
and incomplete if it does not do so for some of them (for
which it may produce invalid outputs or simply never
terminate).

» Restrictions on size of algorithm. For some fixed
programming language considered, we require that the
size of the algorithm produced to solve the problem be
bounded from above by some function of the input size.
For a general case algorithm, this size must be a constant
(however it may be rather large). For a problem of
restricted size, it can vary with the input size restriction.
Nevertheless, for a particular input size it must have a
definite upper bound.

We have deliberately excluded running time and space complexity
of the algorithm from the problem definition. This is because for a
given problem we will reason about its difficulty in terms of the
running-time required to solve it. As with classical complexity
theory this can be taken for the Worst-Case, Average Case, Best
Case or anything in-between (including “average case in practice”).
The memory model we employ is generally the RAM model. We
typically do not include any mention of space-complexity, since by
employing a Perfect Hashing scheme on the accessed memory
addresses, space can be bounded from above by the time

16| Page

consumed, with only a small factor increase in the latter. We also
generally but not always constrain the output to be of polynomial
size in the input. We take space bounds to mean additional space
besides that used by code of the program itself (which can be
modified at runtime if needed!). Similarly we can exclude the time
required to load the body of the program into memory (even if it
may be extremely large — for example exponential in input size).

Other machine-specific runtime requirements (such as number of
random bits used or number of qubits employed) can be applied
accordingly as in the general case.

Proof requirements are specifically important when we are
reasoning about algorithms we either do not know in advance, or
about which we do not have sufficient insight to prove that they
produce correct outputs for all inputs. For example, for
determining the k-th bit of Chaitin’s constant [6], for k between
1079 and 10"9 + 10, an algorithm which simply outputs “1” for all
inputs, might in fact be correct for all we know. However, without
some insight into why it is correct, this may not be satisfactory
enough.

Note that a proof need not always be a requirement. Many image
recognition and other algorithms constructed via Machine Learning
provide no proof of the correctness of their outputs. In fact, for
such algorithms, we currently more or less have little-to-no idea
both why they work so well in practice, and when they work this
well (this latter failing has been shown to allow attacks for
example against a road-sign recognition algorithm, which produce
an image which to a human looks like a clear “STOP” sign, but to
the algorithm it is seems a clear “Minimum speed 120 Km/h”
sign). This has nevertheless not curtailed their adoption in practice.

Also note that the proof part of the output may be only what is
required to complete or generate some larger proof (of potentially
much larger size, e.g. exponentially larger) in some format which
can convince either a human or, respectively, an automated proof
verifier for the problem domain that the output is indeed correct.
For a 3CNF-SAT instance for example, a proof of unsatisfiability
could be just a small subset of the input variables — small enough
to allow exhaustive trial of all possible assignments — which, when
the input expression is reduced accordingly it generates empty
(impossible) clauses.

The restrictions on the size of the algorithm itself are a novelty
specific to finite algorithmics. For the general case, the implicit
assumption made by humans in their quest for a solution is that
there is a single algorithm (of some fixed size) which solves all
inputs properly. The interestingness of our theory and of this paper
in general rests on the assumption that some problems admit
different algorithms (of potentially different sizes) for different
input sizes — and that some may not even admit an algorithm for
the general case.

In some cases it can be useful to “break” an algorithm (its source
code) into a fixed part, which is the same for all inputs in the
problem space (similarly to a fixed algorithm for the general case)
and a variable part — the “hint” — which may vary with input size.

Definition 4 (Algorithms with Hints)

We define the solution to some problem Prob (of either general or
restricted size), to consist of a fixed proper algorithm S(instance,
hint) which takes as input both the instance of the problem and
some hint data to produce its output, alongside a function GEN(n)
which generates the hint for a particular input size n. The output

for a particular problem instance, is thus S(instance,
GEN(Jinstance])).

We call S a hinted algorithm.

Discussion: The advantage of having the GEN(n) function split
from the rest of the algorithm’s body is that it could be
precomputed (note that it takes as parameter the size of the input,
not the input itself). Do note that by taking S to include a source-
code interpreter (a machine simulator) and GEN(n) to include
some source code, we can describe any algorithm in this fashion.

For general case problems, if we constrain GEN(n) to be
polynomial in size to n, and S to run in polynomial time, the
algorithms examined will all be contained within the complexity
class P/poly. Do note that problems which do not admit P/poly
algorithms in the general case (e.g. the hint would grow to super-
polynomial size beyond a certain threshold) might very well be
solvable efficiently for all sizes.

involved in practice — up to potentially very large ones. Also,
P/poly solutions for the general case may be of no practical use for
some problems. Determining the hint may take exponential time,
may be no less hard than the original problem itself or the P/poly
solution may imply no constructive method at all to generate the
hint or even determine if a particular hint is adequate. Alternative
algorithms requiring much shorter hints in practice might exist, but
they might not behave well for arbitrary large inputs thus not
making general case problem P/poly. Finite algorithmics can
therefore be considered a field tangentially related to, but fully
distinct from study of any general case complexity class, including
P/poly.

Section 3.2 Finite complexity and its classes

In order to be able to reason easily about relative running times of
various algorithms, on the finite case — where regular complexity
theory will simply give O(1) — we would like to introduce some
additional theory.

The easiest extension of definition of asymptotic approximation of
some natural function (from N to N) is to simply introduce an
upper bound on the constant hidden by the O, o, or Omega
notations.

In the following we take a natural function to mean any
monotonically non-decreasing function from natural numbers to
natural numbers. Thus we include any function which might
represent some running time or space complexity of some
algorithms for any input up to a certain size (difficulty).

Definition 5 (Finite complexity with bounded constant
and restricted domain)

For two natural functions f and g, some constant natural number c,
and two other natural numbers n1 and n0O, with n1<=n0, we say that
f(n)=0y1.no[€](g(n)) iff f(n)<=c*g(n) for all n between nl and n0
inclusively.

We extend the definition accordingly allow for nO to be +INF.

Also, if nl is the minimum possible value in the input universe, we
can omit it and specify only n2.

The above definition allows us to describe relative performance of
algorithms in some familiar way. For example, for the All-Pairs-
Shortest-Path problem, we can say that the complexity of the
Floyd-Warshall algorithm [7] is T(n)=0,ne[100](n"3). This
essentially means that all of the operations performed by this very

17| Page

short non-recursive algorithm (incrementing loop variables,
dereferencing, comparisons and assignments) are no more than 100
*n"3. This is definitely the case for any n (there are probably less
than 20 such operations per n3).

The shortcomings of the above notation steam from the fact that
for finite cases, we have that f(n)=0,;. o [c](g(n)) for any two non-
zero functions f(n) and g(n), for some appropriate constant c. Thus,
we need to introduce yet more theory for this approach to become
useful.

The natural approach is to choose the constant as small as possible
(introduce a tight bound).

Definition 6 (Finite complexity with _minimal constant
and restricted domain)

For two natural functions f and g, and two natural numbers n1 and
n0, with nl<=n0, we say that Const(f,g)ni.no = cO iff (i)
f(n)=n1.n00[c](g(n)) and (ii) f(n)!=n1. n20[c-1](g(N)).

As before, we allow nO to be +INF and nl to be omitted where
appropriate

We are now able to reason about an algorithm S in terms of “if it

were to have complexity g(n), how large would the constant need
to be?”.

Definition 7 (Apparent relative finite complexity)

For three natural functions f, g, and h, and two natural numbers nl
and n0, with nl<=n0, we say that f(n) = O no"™(g(n)) iff
Const(f,9)n1.no <= h(n0)*Const(f,g)n1..(n1+noy2-

We say formally that for the interval n1..n0, the function f appears
to have complexity g, within a factor of h.

When the function h is constant, we can write the constant directly.

Discussion: We have essentially constrained that the constant
grows from the mid-point of the interval, to the endpoint of the
interval with by a factor of at most h(n0).

For a general case algorithm of some complexity g(n), we have that
there exists some n0, for which its apparent finite case complexity
is also g(n) within a factor of h(n)=1. This follows directly from
the fact in the general case, beyond a certain threshold, the constant
remains fixed regardless of n.

Definition 8 (Certain finite complexity)

For two natural functions f, and g and two other natural numbers
nl and nO, with n1<=n0, we say that f(n) = OC,; o (9(n)) iff f(n) =
Onl..n01+1/nl\2(g(n))-

Discussion: We have chosen h(n)=1+1/n"2, such that Product(h(n))
when n tends to infinity is bounded (it is in fact ~3.68 -
Wolframalfa was used to compute the limit). This allows us to
reason that if f(n) = OC,q (g(n)) => f(n) = OCyyo (g(n)) for all N0
beyond a certain threshold, then f(n) = O(g(n)). Any h(n) with
bounded Product(h(n)) when n tends to infinity can be used to
replace our choice.

Definition 9 (Polynomial rank of a finite complexity)

For a natural function f and two natural numbers nl1 and n0, with
nl<=n0, we say that PolyRank, o(f) = k, iff (i) f(n) =
Ony.no’(N"[k-11) and (i) (n) = Opy no*(n"[k-2]).

Discussion: We have chosen h(n)=2, such that Product(h(n)) after
log(n) doublings of n0 is bounded from above by n (it is precisely
n actually). This allows us to reason that if Poly(f(n)) = k =>

Poly,«o(f(n)) = k for all n0 beyond a certain threshold, then f(n) =
O(n"k).

Definition 10 (Polylogarithmic _rank of a finite
complexity)

For a natural function f and two natural numbers n1 and n0, with
nl<=n0, we say that LogRank, o(f) = k, iff (i) f(n) =
OCpy.no(log(n)™k) and (ii) f(n) != OCyy. no(log(n)"[k-11).

We consider only k>=1. If no such k exists, we say that
LogRanky;. no(f) = 0.

Definition 11 (Linear finite complexity class)

For a natural function f and two natural numbers n1 and n0, with
n1l<=n0, we say that Complexityn; o(f) Apartine= Linearn; no, iff
f(n) = Ocnl..no(n)-

Discussion: We have defined the linear complexity class such that
it allows a very small growth factor for the constant, as n grows to
infinity. So small actually these factors multiplied together are less
than ~3.68.

Definition 12 (Polylogarithmic finite complexity class)

For a natural function f and two natural numbers nl1 and n0, with
n1l<=n0, we say that Complexity,; no(f) Apartine= PolyL0gn1 no,
iff LogRank,; () < log(n)/log(log(n)).

Discussion: The value log(n)/log(log(n)) was chosen such that the
resulting effective growth rate is linear or below

Definition 13 (Polynomial finite complexity class)

For a natural function f and two natural numbers n1 and n0, with
nl<=n0, we say that Complexityn; no(f) Apartine= Poly,; no, iff
PolyRankn, no(f) < 1+log(log(n)) and f NotApartinel=
PolyLogn. no-

Discussion: The value log(log(n)) was chosen such that any
problem within this complexity class would most likely be
tractable for almost all inputs which show up in practice. For
example, if we take f(n) to represent the complexity of some
algorithm based on its input size, for an input of size 2764 (~16
Million Petabytes), the exponent in PolyRank(f) would be just 7.
Also for an input of mere 1024 size, the maximum exponent can
still be 5. This is very appropriate since some interesting problems,
like for example Assignment Problem, have general case
complexity around these thresholds. If the practical cases for the
problem at hand involve n << 1024, the constant 1 in 1+log(log(n))
could be increased to something more suitable, like 2 or 5.

Essentially, if a problem belongs to the polynomial finite
complexity class, we can expect that almost surely the associated
algorithm will perform fast enough in practice, to make the
problem tractable. Thus, the semantic meaning from the general-
case Poly class is maintained.

Definition 14 (Semi-Polynomial finite complexity class)

For a natural function f and two natural numbers nl1 and n0, with
n1<=n0, we say that Complexityn; no(f) Apartine= SemiPoly,; no,
iff PolyRank,; qo(f) < 1+log(n) and f NotApartine!= Polyp; 0.

Discussion: The value log(n) was chosen such that any problem
within this complexity class would most likely be tractable for a
significant number of inputs which show up in practice. For
example, if we take f(n) to represent the complexity of some
algorithm based on its input size, for an input of size 1024, the
exponent in PolyRank(f) would be 11, placing the problem at the

18| Page

threshold of tractability versus intractability given existing super-
computers. Again, if in practice we except that n << 1024, the
constant 1 in the 1+log(n) above can be adjusted to something
more suitable.

Definition 15 (Exponential rank of a finite complexity)

For a natural function f and two natural numbers nl1 and n0, with
nl<=n0, we say that ExpRank,. no(f) = 1/k, iff (i) f(n) =
OC,1.no(2M[n/K]) and (i) f(n) '= OCpy_no(27[n/(k+1)]).

Discussion: We are thus describing for a certain n, how large the
exponent of 2 needs to be, in order to tightly provide an upper
bound for the function. We describe it as a fraction of n itself.

Definition 16 (Exponential finite complexity class)

For a natural function f and two natural numbers n1 and n0, with
nl<=n0, we say that Complexity,; no(f) Apartine= EXpn. no, iff
ExpRank,. .o(f) <= 8 and furthermore PolyRank(f) > 1+log(n).

Discussion: We are taking the exponential finite complexity class
to represent everything which is at most about simply exponential
in n, which does not belong to any of the previous classes. This is a
break from the general case EXPTIME complexity class, where the
exponent is allowed to be polynomial in n, not just linear. We have
chosen the value 8 instead of 1, to allow functions of the order of
n! to fit into this class, up to n ~ 512 - which should be more than
enough for anything beyond it to be considered intractable in
practice.

Definition 17 (Intractable finite complexity class)

For a natural function f and two natural numbers nl1 and n0, with
nl<=n0, we say that Complexity,; ,o(f) Apartine= Intry; o, iff
ExpRank,; o(f) > 8 and furthermore PolyRank(f) > 1+log(n).

Discussion: We are basically naming everything above exponential
finite complexity class to be Intractable. In practice, for some small
n<110 (for example n<20), problems in this class may still be
solvable. Nevertheless, if n is small enough, then the output for all
possible inputs can be precomputed and given as a hint to an
algorithm under Definition 4. It thus makes sense to expect that in
practice anything super-exponential can either be precomputed or
be considered intractable.

Definition 18 (Constant finite complexity class)

For a natural function f and two natural numbers nl1 and n0, with
nl<=n0, we say that Complexity,; o(f) Apartine= Const,; o, iff
(i) f = OCppno(c0), for some fixed constant cO and (ii)
LogRank(f)<=1.

We also say in this context that cO is the constant rank, or
ConstRank,;. no(f) = ¢0.

Discussion: Constant finite complexity is quite similar to general
case constant complexity. Do note however that the constant rank
obtained in practice, might in fact be hiding some small growing
non-constant function for the general case. Furthermore, when
reasoning about complexity with regard to different upper bounds
n0, the constant cO must remain fixed — independent of n0.

Section 3.3 Finite complexity hierarchy

Given the definitions in Section 3.2, for any given natural interval
nl1..n0, with n1<=n0, we can classify all the natural functions f,
into precisely one of the following classes.

1. Consty no

2. POlyLOgnl..nO

Linear,; no

POIynl.AnO

SemiPoly,; no

EXpnl,.nO

. Introg o

The higher the level a function occupies in this hierarchy, the less
tractable we expect a problem admitting an algorithm of this
complexity to be.

No g~

We are now armed with the possibility to describe the variation in
the classification of a particular natural function f, as we allow the
input domain to expand.

Definition 19 (Threshold of complexity class explosion)

For a natural function f, a complexity hierarchy level | and a
natural number nl, we say that Explode;(f,I) = Min {z | f belongs
to some complexity class of level at most | for any n1..n0, with
n0<z, but does not for nl..z}. If the set is empty, we take the
marker value +INF.

We can represent the hierarchy level by either its index above or
the corresponding name (PolyLog,Linear,etc.).

Discussion: We are taking the explosion threshold for a function f,
to be the minimum nO beyond some small nl value, where the
function f will belong to a complexity class strictly above the
respective level.

For practical considerations we can limit the smallest value in the
input domain of f to some n1, large enough to be non-trivial. This
value n1 can be fixed apriori (for example n=16 seems a promising
candidate) or fixed in relation to a particular problem domain. For
example, for parameterized complexity 3-CNF-SAT in n — the
number of variables, anything below n=10 can be considered
trivial. The bottom line in choosing n1 > 1 is to exclude some
anomalous behavior of a function around the very start of its
domain.

Do note that the function f might have different Explode,,(f,I)
values, for different nls. In fact, for some level I, there could be
some nl beyond which the explosion threshold is +INF.

Definition 20 (Threshold of complexity class collapse)

For a natural function f, a complexity hierarchy level | and a
natural number n1, we say that Collapse,,(f,I) = Min {z | f belongs
to some complexity class of level at most | for any 1..n0, with
n0>=z and n0 <= n1}. If the set is empty, we take the marker value
+INF.

We can also take n1 to be +INF.

Discussion: We are taking the collapse threshold for a function f, to
be the minimum n0 beyond which f belongs to a certain
complexity class or better, at least for up to another higher limit nl
(which may be +INF).

Section 3.4 Finite Algorithmics and Problems

When attempting to solve a computer science problem, we shall
consider the following as input:

1. The Full Problem Statement according to
Definition 3.

2. The interval nl1..n0 of input size (or other
difficulty constraining parameter) where
practical instances of the problem lie.

3. The worst acceptable finite complexity class

19| Page

for running time required by desired algorithm.
We can reason in terms of worst-case/best-
case/average-case either for the entire domain
or simply for the instances which occur in
practice. We can describe this by requiring that
the running time belongs to a class up to a
certain level of the finite complexity hierarchy
described in Section 3.3. In practice this is
results directly from point 2 above, the
reasonable timeframe in which a solution to
such a problem is useful and the speed of
existing hardware. If the produced algorithm
allows high degree of parallelism, then the
intended cluster size can also be factored in.
See Appendix 1 for approximations
considering current state of the art hardware.

4. The amount of time which can be allotted to
actually discovering the solution. When
reasoning about a potentially variable upper
input bound nO, this can also be expressed in
terms of finite complexity class, with regard to
the difficulty parameter n0.

5. Some collection of source-code for known
algorithms and data structures.

The desired output for will consist of one of the following:

1. A Hinted Algorithm as per Definition 4, S and some fixed hint
hintnO.

2. A Hinted Algorithm S and another algorithm GEN which can
generate hintn for any n in n1..n0. We call the GEN algorithm, the
Hint Genesis Algorithm.

3. A Hinted Algorithm AnO which generates the pair of algorithms
from point 2 above, alongside its fixed hint - hintAn0. We call such
an algorithm the Generator Algorithm.

When reasoning about the relative efficiency of finite case
algorithms, we shall consider them both in terms of running time
complexity and complexity of hint size, with relation to input size
(difficulty). Thus, we can say that an algorithm is T(n)/G(n)
efficient, where T(n) is running time and G(n) is hint size. The
hint, as well as the program code, is assumed to be already loaded
in memory. For example we can reason about a certain algorithm /
problem saying it has finite case complexity Poly/PolyLog on the
domain of interest.

The most straightforward formulation of the above is the
following: “Given what we already know, find an efficient enough,
potentially hinted, algorithm which solves the full problem
statement on any input of size (difficulty) within the interval
nl..n0, or show how one can be constructed.”

It is simple to note that an output of type 2 above can be
precomputed from one of type 3, by running the algorithm A.
Furthermore an output of type 1 can be precomputed from one of
type 2. It is useful however to reason about these options
separately, since the precomputation step between the types may
not always be polynomial.

Two more inputs might be useful for some problems for which
there are known algorithms to solve them for some particular kinds
of inputs (e.g. of small input size). These are:

* The verifiability thresholds given existing algorithms.

Namely:

o vl: The answer for ALL instances of this input size
(difficulty parameter) or below can be precomputed in
feasible time.

o Vv2: The answer to ANY instance of this input size
(difficulty) or below can be determined within feasible
time.

o Vv3: The answer to MANY instances of this input size
(difficulty) or below can be determined within feasible
time.

o v4: The answer to SOME instances of this input size
(difficulty) can be determined within feasible time. For
instances beyond this input size, it is considered highly
unlikely for then-existing state of the art to be able to
solve any of them.

* Golden Data. For instances of input size (difficulty) between
vl.v4, some already existing correct input/output golden data
might be offered. This can include:

o Tests with precise output.
o Tests with lower and/or upper bounds on the correct
output.

Golden data might be useful to save running-time during testing,
by avoiding the need to run the original algorithm which generated
it (which might have consumed a lot of time or resources initially).

= Efficiently solvable via a known algorithm (ES).
Problems include string pattern-matching, shortest paths
and many, many others. In fact most of the problems
humanity has tackled are now included in this category.
The state of the art algorithms known to the scientific
community are sufficiently efficient to solve all practical
instances of such problems.

= Tractable but insufficiently so (TR). For some
problems, like Assignment Problem, Multidimensional
Range Queries we know sufficiently efficient algorithms
to solve any instance of them relatively quickly, but for
some practical applications we need even faster ones. We
may not even know if such algorithms exist, as the gap
between the lower-bounds and the upper-bounds,
complexity wise can be quite large still.

= Intractable for large input sizes, but tractable for
small ones (PTR). For problems such as Prime
Factorization, Discrete Logarithm, NP Complete
problems like Boolean Formula Satisfiability, Knapsack
problem and others, an algorithm for solving them
precisely is known, but the best one is still very
inefficient (largely in terms of running time), thus
making it suitable only for small input sizes. Some
problems in this category (especially some NP-Complete
ones), might fall in the TR category for some practical
applications, when a sufficiently accurate approximation
algorithm is known, when the practical input sizes are
small, or when the practical instances have some other
trait (known or unknown) making them easier than the
general case (like having a small target sum for the
knapsack problem, or having a small number of clauses
per variable for 3-CNF-SAT).

= |Intractable because of assumed hardness (ITRA). For
problems in this category, no algorithm is known which
solves any instance but those of trivial size and it is
strongly suspected that none exists, because they belong

20| Page

to a certain complexity class. Problems such as
Quantified Boolean Satisfiability which belong to the
complexity class PSPACE-Complete are believed not to
be solvable in polynomial time, and be harder still than
even NP-Complete problems. However it is not known if
this is so or not. Furthermore, #P-Complete problems
like #SAT are also believed to be hard. But this is yet
again still unknown.

= Intractable and mysterious (ITRM). There are
problems - like determining the encryption key used to
encrypt a known plain text using AES given the cypher
output - which are not known to belong to a specific
presumably hard complexity class. Nevertheless, they are
generally regarded to be intractable by mere fact that a
large number of researchers have spent time thinking
about them and yet no efficient algorithm has been
determined.

= Truly Intractable (IT). Some problems, like Halting
Problem, Busy Beaver, Kolmogorov Complexity (very
useful in compression and encryption), word problem for
semi-Thue systems, determining the bits of Chaitin’s
constant to non-trivial precision and many others have
been proven to be intractable in the general case. That is,
no algorithm exists which solves them. This nevertheless
does not necessarily make them intractable for bounded-
size input. Two-symbol Busy Beaver game for example
has been solved precisely for up to 4 states [5]..

Finite Algorithms aims to provide efficient algorithms for
problems in TR, PTR, ITRA, ITRM and IT classes but only for the
finite cases which occur in practice, without necessarily solving or
giving a definite negative answer with regard to a solution for the
general case. Furthermore, known algorithms for general-case
problems (in any tractability category) can be used in the
automated or semi-automated quest for efficient ones for the finite
case.

Definition 20a (Complexity of Solving a Problem)

Given a particular finite case computer science problem Prob,
specified by the inputs 1,3-7 in this section (excluding the actual
finite limits), we refer to complexity of solving this problem, as the
complexity of some algorithm A(n) which given a natural number
n, generates the source code of some hinted algorithm, along with
its hint (output of type 1) for any n <= n0 (input 2).

In case we are interested in solving the problem for any upper input
size (difficulty) bound, we can take the input 2 bound nO to be
+INF and allow A to take this special value for its single
parameter.

We reason about the complexity of solving a problem in terms of
complexity of the corresponding algorithm A.

For some problem Prob (potentially finite case) we denote
Complexity(Prob, n0) the complexity of the most efficient
algorithm which solves the problem for any n up to nO.

Discussion: The complexity of solving a problem can be thought of
essentially as the running time of some algorithm which runs on
some machine (e.g. a regular computer) which produces the source
code required to solve any instance of such problem, up to some
upper input (difficulty) bound which itself is below some n0. Note
that solving a computer science problem is in itself a computer
science problem, to which we can apply the entire theoretical
framework presented.

4. Results

We now proceed to present some elementary results of high
importance derived within the theoretical framework introduced in
Section 3.

Section 4.1 Relationships between complexity classes, finite and
general

In this subsection we present basic relationships between finite
case and general case complexity classes for natural functions.

Section 4.1.1 From finite case complexity to general case

Theorem 21 (When finite case complexity implies general case
complexity)

1. If f(n) = OC,, (g(n)) for some nO, and also for any
n’>=n0, we have that f{n) = OC, (g(n)) => f(n) =
OCy:(g(n)). then f(n) = O(g(n)).

2. If PolyRanknO(f) = k, for some fixed natural numbers n0
and k, and also for any n’>=n0 we have that
PolyRankn’(f) = k => PolyRank2*n’(f) = k, then
f(n)=0(n"k).

If such nO and k exist, we can say that f belongs to the
general case polynomial complexity class.

3. If LogRankq(f) = k, for some fixed natural number n0
and k, and also for any n’>=n0 we have that
LogRank,(f) = k => PolyRank,«(f) = k, then
f(n)=0(log(n)"k).

4. If f Apartine=PolyLog,, for some n0O and also for any
n’>=n0 we have that f Apartine=PolyLog, => f
Apartine= PolyLog,x,, then f(n)=0O(n).

If such nO exists, we can say that f is grows at most
Linearly. Depending on its exact PolyRank, it may in
fact grow just polylogarithmically.

5. If f Apartine=Linear,, for some n0 and and also for any
n’>=n0 we have that f Apartine=Linear,, => f
Apartine=Linear,s,-, then f(n)=0(n).

Like above, if such n0 exists, we can say that f is grows
at most Linearly.

6. If f Apartine=Poly,, for some n0 and and also for any
n’>=n0 we have that f Apartine=Poly,, => f
Apartine=Poly,:(f), then f(n)=0(n*og(log(n))).

If such nO exists, we can say that f = O(n"log(log(n))).
Note that this is strictly speaking superpolynomial, but
barely so. Also, note that it is sub-exponential.

7. If f Apartine=SemiPolyn0 for some n0 and and also for
any n’>=n0 we have that f Apartine=SemiPolyn’ => f
Apartine=SemiPoly2*n’, then f(n)=O(n"log(n)).

If such n0 exists, we can say that f = O(n"log(n)). Note
that this is strictly speaking superpolynomial, however
also sub-exponential.

8. If f Apartine=Expn0 for some nO and also for any
n’>=n0 we have that f Apartine=Expn’ => f
Apartine=Exp2*n’, then f(n)=0(2"n).

If such nO exists, we can say that f = O(2n), which is
part of the EXP complexity class.

9. If f Apartine=Const,, for some n0 and and also for any
n’>=n0 we have that f Apartine=Const, => f
Apartine=Const,x,;, then f(n)=0(1).

If such n0 exists, we can say that f is of constant growth
rate.

10. If there exists an infinite number of natural numbers nO,
such that ExplodenO(f, Exp)<+INF => then

21| Page

f(n)=Omega(2"n).
This means f belongs to EXP or worse.

Proof: Proving statements 1-9 involves straight forward induction
and computation of the limit to infinity of the Product of the
allowed constant growth rates under each corresponding definition.
While their significance is crucial, the proof is trivial enough to be
omitted from this paper. Proof of statement 10 is by contradiction,
showing that there can exist no fixed constant hidden by an o(2”n)
notation. Again, it is considered a simple exercise and is excluded
from this paper.

Corollary: Statements 1-9, remain true if for some complexity
level |, the hypothesis is replaced by Explode.ne(f,1) = +INF. Also
they remain true, if the induction hypothesis of the second part is
extended to refer not only to n’, but to all n0 <=n’’> <=n’.

Discussion: The corollary above gives a direct criterion for
converting between finite and general case complexity classes,
when possible.

Theorem 22 (When finite case complexity excludes
general case complexity)

For any natural function f and any finite complexity level I, if there
exists an infinite number of n0 such that Explode(f,1) <+INF then
f belongs to a complexity class worse than the corresponding
general case complexity given for that level by Theorem 21.

Proof: Like for statement 10 for Theorem 21, the proof is by
contraction, showing that no fixed constant can exists hidden by
the O notation for the corresponding general case complexity class.
We consider it rather trivial and omit it form this paper.

Discussion: The theorem gives a direct criterion for excluding a
general case complexity for a function f, about which we know
how it behaves in practice and we are also able to reason that there
will be infinitely many lager values on which it continues to
behave as such in terms of growth rate. Do note we require that an
infinite number of n0O exist. It may be that the function f has
smaller finite complexity for any small enough finite interval.
However if there are an infinite number of suitable nO, once the
bounds of that interval are allowed to grow sufficiently large, the
complexity always explodes.

Theorem 23 (Precise determination of general case
complexity)

For any natural function f and any finite complexity level I, f
belongs to the corresponding general case complexity class under
Theorem 21, iff there exists an n0, such that Collapse,o, +ine(f,]) =
k, for some fixed natural number k>=n0 and Explodey_.nr(f,1+1) =
+INF.

Proof: The proof consists of direct application of the definitions of
Collapse and Explode to reduce to a proper application of Theorem
21. We consider it trivial enough to be omitted from this paper.

Note that we may not always know enough about a function to be
able to apply either of the above theorems. Also, do note that even
if a function belongs to a favorable general case complexity class,
it does not mean it is solvable in practice, as its threshold
Collapseo(f,1) may be beyond the largest instances of practical
applications.

Analogously, even if a function belongs to a certain unfavorable
general case complexity class or worse, it may still be very
solvable for all cases of practical importance. Its threshold

Explode,ne(f,1) may be larger than some n0 which is the maximum
size of practical instances and also Collapseo(f,r) for some r<I may
be small enough to make the problem practically tractable.

Section 4.1.2 From general case complexity to finite case

Theorem 24 (General case complexity generally implies finite
case after some threshold)

For any natural function f which has general complexity O(g(n))
and Omega(h(n)), the following statements are true:

1. There exists some n0, such that for all n>n0,
f(n) = OCy(g(n)).

2. For any complexity class level | with growth
rate no smaller than g(n), then Collapse.ng(f,1)
< +INF and also there exists some n0, such that
Explodeng(f,I) = +INF.

If h(n) grows faster than the functions in complexity class I, then
Collapse.ne(f,]) = +INF and also there exists some positive n0,
such that Explodeo(f,1) < +INF.

By growth rate of functions in a finite complexity class I, we refer
to the asymptotic growth rate of the formula representative of such
class, given by Definitions in Section 3.2.

Proof: The proof is by contradiction, following the direct
application of the definitions of general asymptotic growth
notations. We consider the proof trivial enough to be omitted.

Discussion: The theorem implies that having determined some
bounds for the general case complexity allows us to say that after
some threshold, those bounds will characterize the finite case as
well.

Section 4.1.3 Relationships between finite case
complexity classes

Relationships between finite complexity classes of different
problems are trickier to characterize than in the general case. This
is because in case of reduction from one problem to a number of
applications of some others, it actually matters precisely how many
applications there are of each of those other problems and also
what the input size (difficulty) bounds for those are. As such, for
example a polynomial number of applications of a solution of
complexity class Poly,, might very well result in the PolyRank of
the main algorithm to exceed the log(log(n0)) upper-threshold for
the Poly,, class. Nevertheless, for a particular candidate algorithm
we can definitely characterize its actual complexity with regard to
the problems to which the solution is reduced, using the LogRank,
PolyRank and ExpRank values.

Theorem 25 (Reductions between finite case problems)

The following statements are true:

1. Up to n0"k applications of an algorithm of
PolyRank,, = j results in an algorithm of
complexity PolyRank o = k+j.

2. Upto log(n0)"k applications of an algorithm of
LogRank,, = j, results in an algorithm of
complexity LogRankq = k+j.

3. Up to 27(n0/k) applications of an algorithm of
ExpRank,, = 1/j, results in an algorithm of
complexity ExpRank = 1/k + 1/j.

Proof: Again we omit proofs as they are mere algebraic symbolic

22 |Page

multiplications of the formulas corresponding to the definitions of
the respective classes.

There are of course more interesting reduction theorems. The core
aspect for reductions within some finite interval nl..n0 is for the
resulting constant, expressed as function of n0 and (n1+n0)/2
respectively to allow the candidate algorithm to fit the definition of
a certain complexity class. This generally involves computing the
new LogRank, PolyRank or ExpRank values. But theorems
describing relationships between lower and higher finite
complexity classes can also be interesting. We leave such as open
questions for further research.

Observation 26 (Variable finite complexity)

For some complexity class level I, and a (potentially infinite)
sequence of increasing natural numbers al,a2,... there exists a
natural function f, such that for every i, we have that
EXpIOdea[i](f,I):ai+l.

Discussion: Essentially it can be that some function has infinitely
many points where its finite complexity is small enough, however
it never collapses permanently to such a favorable complexity. A
function which grows extremely fast on successive powers of two,
but very slowly in-between is one such example. In practice, it
might be that a problem’s optimal complexity varies wildly from
one input size (difficulty) to another, within the bounds of its
general-case complexity (if such a bound exists).

Finally, when solving a problem on the finite case, the data in
Annex 1 which estimates the highest upper bounds for tractability
for various complexity classes can prove of general interest.

Section 4.2 Automated and assisted solving of computer
science problems on the finite case

In this subsection we present basic relationships between finite
case and general case complexity classes for computer science
problems. While in Section 3.2 we introduced the concept of finite
complexity for natural functions, here we apply those concepts to
refer to functions which describe the running times of algorithms
and respectively of hint sizes.

Section 4.2.1 General Approach

Since Sections 4.1.1 and 4.1.2 refer to relationships between finite
and general case complexity of natural functions in general, the
results there apply both to ones representing the running time of an
algorithm as well as those representing the size of its hint (under
Definition 4).

We adopt the notation f(n)/g(n) from general complexity classes
(e.g. P/Poly translates to Poly.o/Poly,) to reason about finite
complexities analogously. Under Definition 4 as well as the
discussion in Section 3.4 regarding output, when solving a problem
for the finite case interval nl1..n0, the actual program itself, S, will
be of constant size. In fact, a program of fixed size exists such that
it solves all intervals n1..n0 for some potentially distinct and
perhaps very large Hint,,: namely one which includes an universal
machine simulator (e.g. a registry machine simulator).

The manner in which we choose to consider splitting the actual
algorithm for a finite case problem between the fixed part and the
hint is as much art as it is science. Knowledge of the problem
domain as well as trial and error may lead to various choices in this
regard. Nevertheless, the value of finite algorithmics lies in the
conjecture that some problems do not admit a sufficiently efficient
algorithm for the general case (or that identifying such is not

possible), but do in fact admit some (maybe distinct) algorithms for
finite universes of inputs.

In our quest to identify a practical finite case solution to a problem
on interval nl..n0, or determine that such does not exists (or that it
is as hard as the general case), we can take the following approach.

Approach 25 (Automatic Solving of a Problem Instance)

Given some problem Prob, specified by inputs 1-7 described in
section 3.4, we can construct a fixed algorithm to solve it which
takes the following rough steps:

1. It considers some enumerable (potentially finite)
family F of fixed hinted algorithms S. This family can
be specific to the problem domain of Prob — it can
essentially describe “what we can expect the source code
of some algorithm which solves it to look like”. Each
algorithm in this family is hinted, as per Definition 4.

2. It maintains some internal state s, describing the
current status of the search for a solution. This state
can be of rather large size, so long as it fits the space
complexity bounds imposed on the automatic solving
algorithm itself. It may consist, for example, of the
following:

a. Promising Algorithms and methods of Hint
generation.

b. Algorithms and Hints which are adequate for some
specific input sizes (difficulties).

c. Statistics on promising algorithms, hints and hint
generation methods collected in step 3e below.

d. Information on negative results (inadequate algorithms
/ hints / hint generation methods), analogous to points a)-c) above.

3. While a solution is not found, it explores some more,
by doing the following:
a. Pick some algorithm S from the family F,
based on the internal state s.
b. Choose a potential hint hintS for S, from the
finite set of potential hints, by some method GENS.
C. Evaluate S preliminarily by running it on
several inputs within the relevant domain, on which it
has not been run before, using the hintS. For example, S
can be run on Golden Data tests, for increasing input
sizes (difficulties) from the ones in v1 up to v4.
d. If S takes longer than the upper bound for the
desired complexity on a particular input, or its course of
execution seems unpromising, halt it (to be potentially
resumed later). Note that given the theoretical framework
concerning finite complexity classes, for a given input
size (difficulty) any desired complexity translates to a
precise upper bound on the running time (or number of
operations of the algorithm). The constant is never
“hidden” in finite algorithmics.

e. Collect the following data with regard to the
execution of algorithm S on hintS and the relevant test
cases:

= Running Time and Space Consumed for some input.
Statistics regarding

= Input/Output correlations. These can include error rate,
such as Specificity and Sensitivity and so on.
= Full or partial snapshots of its internal memory state at

23| Page

various runtime moments. These are taken in the hope
that correlations can be made between them and the
desirability of the overall behavior of some algorithm

f. Use the data collected above to update the internal state
describing the status of the search. Naturally, the data could be
synthesized and aggregated before or after update of the internal
state, in order to reduce its volume.

4. Once a sufficiently adequate pair of algorithm S and
hint generation method GENs are identified, it
outputs them (i.e. their source code and for GENg its
hint) as the solution.

Discussion: The approach essentially considers algorithms and
hints in some arbitrary order, tests them on available inputs and
finally chooses the first one which is adequate enough. The art of
producing an efficient implementation of this approach for some
problem domain lies particularly in identifying some good way to
choose this arbitrary order.

By introducing Approach 25 we are effectively shifting attention of
researchers from focusing solely on understanding correlations
between input/correct output pairs within a problem domain, to
focusing on correlations between structure and hints of algorithms
and their relative performance / adequacy with regard to that
domain. This approach can be reminiscent of the domain of Al and
Machine Learning.

Approach 26 (Family of algorithms for any problem
domain)

For Step 1 of Approach 25 above, the following family of
algorithms can be considered.

Given some object-oriented programming language grammar (e.g.
C#,Typescript, etc.), consider only source codes (algorithms)
which satisfy the following conditions:

1. They include as reference some or all types
corresponding to data structures and algorithms included
in part 5 of the input, as described in section 3.4. The
algorithms which are not meant as general purpose data
structures, are to be wrapped in a type called a Solver,
which is essentially a data structure with a single Query()
method producing the output. Part 5 of the input can be
restricted to only what researchers believe to be relevant
to the problem domain.

2. They define at most 20 new types (interfaces + source
code implementation).

3. Each defined type contains exactly most 20 public
methods.

4. Each defined type contains at most 20 private methods.

5. Each defined type includes at most 20 internal variables
(which can be collections such as lists of dictionaries
over other types).

6. Each defined type includes at most 20 “magic constants”,
which are actual values of some type.

7. Each method takes at most 20 (typed) parameters.

8. Each method defines at most 20 local variables (for all
levels of imbrication).

9. Each executable line of code, consists of one of the
following:

a. A statement, which can be either:

i An assignment to some variable in scope from the
result of the evaluation of an expression over

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

variables in scope.
An evaluation of an expression over variables in
scope without storing the resulting value.
A loop-related execution flow control directive,
such as break or continue.
By the definition of expression above we include
public member methods invocations on some of the
underlying parameter values, as well as parameters
lists buildups using operators such as comma (,).
Type properties or parameterless methods are
represented as methods taking no parameters.
A conditional branching of the form IF(expression) then
statement else statement.
A conditional loop of the form WHILE(true) then
statement. This allows for both initial and final loop
condition checking, via inclusion of an appropriate IF
statement.
A return statement of the form RETURN(expression).

The expressions which occur throughout all methods are
defined globally. Source code within methods uses them
by specifying the corresponding IDs and the required
assignment. The operators within an expression can be
only invocations of methods on underlying types, or the
parameter list builder (e.g. comma). All types are boxed.
As such, for example a+b is represented as
a.Invoke(“AddWith”, b).

There are at most 20 “heavy” expressions globally,
which are defined on between 6 and 20 variables.

There ar at most 400 “light” expressions globally, which
are defied on at most 5 variables.

Values are passed by reference to invoked methods.
Thus, ther actual value can be changed by the method if
it so choses or needs. Non-destruction of the input can be
achieved via cloning.

No method has an imbrication level above 5 (e.g. IF
contained within another IF contained within a WHILE,
and so 0). Algorithms which involve imbrication levels
beyond this value can actually be rewritten to use private
method calls.

There are at most 20 “heavy” methods globally, which
have an imbrication level of either 4 or 5. All the others
have imbrication level at most 3.

There are at most 400 lines of code for any single
method body.

There are at most 20000 lines of code for all the
methods’ bodies together.

There are at most 400 global magic constants, besides the
ones allotted to each type.

There exists a single type, which is the actual Solver for
the problem at hand which defines the following
interface:

a. Initialize(hint) — a method which initializes the
solver with the corresponding hint, allowing any
precomputations if required.

b. Query(instance) — a method which returns the
output for specified instance of the problem.

24 |Page

Discussion: The above family of fixed algorithms is understood by
us, the author, to include essentially everything that a human
researcher could reasonably discover on his own with regard to any
problem domain. In fact, to the best of our knowledge, almost all
(if not all) currently known algorithms for solving any general case
problem can be effectively mapped to some member of this family.
The value 20 which appears repeatedly was chosen arbitrarily to
provide a rather generous upper bound. It is most likely that a
lower value, of something like 5 would still allow sufficient
coverage of everything which could be of interest to researchers.
Furthermore, for specific problem domains, just a fixed algorithm
of much smaller sophistication can be hypothesized to solve the
problem on sufficiently large input sizes (difficulties), given the
right hint. In that case, the quest for a solution simplifies to the
quest for a proper Hint.

Do note that the family of algorithms described in Approach 26 is
universal. Namely, it includes algorithms which simulate a registry
machine. Given also that the algorithms are Hinted, it is possible to
effectively circumvent any limits placed on imbrication depth,
source code size or anything of the like, simply by moving the
actual algorithm to the Hint. This however, runs contrary to the
manner in which we suggest this approach has value. The Hint
should be specific to the problem domain. For some problems (like
3CNF-SAT for example) it could include some bending of this rule
— for example to allow for formulas specific to a particular input
size to be evaluated in the context of conditional branching —.
Nevertheless, the Hint should be very specific to the problem
domain itself and in fact also to the particular finite bounds for
which a solution is sought out.

For some very hard problems, it could be that allowing the
program to modify itself essentially by incorporating parts of the
hint or of the problem instance as part of its de-facto code might
prove interesting avenues for exploration. Such problems might
include simulation of human consciousness, resolving halting
problem for finite cases and perhaps others not yet considered by
humanity. Nevertheless, allowing a program to essentially alter
itself should most likely not be the initial main focus of research
within finite algorithmics.

Once a candidate fixed algorithm S which shows sufficient
promise on small problem instances has been identified — for
example one which works correctly and efficiently on all inputs up
to the v1 threshold and on all other inputs on which it had been
tested -, the only remaining issue is to determine a suitable hint for
it for larger instances. The following approaches can be taken
either alone or in combination:

e Exhaustive Hint enumeration. For problem instances
of small size, this could potentially be done, especially if
a convenient finite complexity class is suspected for the
hint size with relation to input size. This could also be
used as a starting point for problems where we are
essentially clueless as to what a proper hint might be. For
small enough instances, a starting point could be
Deterministic Finite Cover Automata [8] which correctly
recognizes the finite language of some decision problem
— thus allowing all cases to be answered correctly and
efficiently.

e Inductive Hint construction. Identify an algorithm
which, given some hints for problem instances of smaller
input size (difficulty), it constructs one for instances of
larger size. This algorithm itself could be sought out

using Approach 25 and 26. We would suggest however
that it takes itself a hint of very small constant size (if
any at all). The input on which it operates is the set of
hints for smaller input sizes.

e Adaptive Hint construction. Use existing and future
techniques to determine causal correlations between
events — such as Deep Learning models -, to analyze the
data collected in step 3e of Approach 25 (including
correlations between parts of the memory state at runtime
and ultimate behavior of the algorithm — correctness,
timeout, etc.) to hypothesize, test and prioritize potential
hints over others, as well as to eliminate obviously or
apparently invalid ones. These techniques can also be
used to alter and combine successful hints so that the
search for an adequate one converges faster on an
acceptable solution.

e Tapping Randomness. Include randomness in decision
making with regard to which variation to try next or how
to prioritize approaches. Many surprisingly efficient SAT
Solvers today employ it.

e Multiple Arm Bandits. Ultimately, the quest for a
proper hint, using some automated method, involves
allotting a finite resource — running time — between
several existing or new avenues of exploration: be it an
existing hint is to be tried out on more cases for
gathering further data, one is to be transformed by some
rule or combined with another under some other method
or some other random variation is to be introduced.
Sometimes, the expected benefit of trying a particular
method or transformation over another is unclear or
cannot be known in advance. Taking such decisions,
including with regard to how to balance exploration and
exploitation pertains to a well-known computer science
problem called Multiple Arm Bandits (see [9] for
example).

Finally, at all stages of the approaches described above, a human
researcher could intervene and make adjustments based on his own
creative and rigorous judgment, potentially leading to further
speed-ups in the search for a solution.

Note the that the approach described in this sub-section includes
any currently known Machine-Learning algorithm, including Deep
Learning with multiple number of layers in some neural network:
The output of the learning is in our terminology the Hint to the
algorithm, which, itself is merely a simulator of a neural network.
The actual learning algorithm (e.g. Reinforced Learning) is just
one potential method to be used in line 3.f) of Approach 25. Any
such currently known learning algorithm is itself contained with
the finite family of algorithms proposed by Approach 26.

Furthermore, Approach 25 could be refined to include the theory of
Schmidhuber related to Godel machines [10]. This can be applied
either with regard to proving correctness or to simply speed up the
search for an optimal algorithm.

Section 4.2.2 Elementary Results

In this sub-section we present some elementary results pertaining
to finite complexity of computer science problems, considering the
approaches described in Section 4.2.1.

In this sub-section we limit our attention to problems which have
polynomial or smaller output sizes. This includes all decision
problems (where the output is a single bit). The restriction that the

25| Page

output size be polynomial is most of the time natural, since outputs
of super-polynomial size would, in themselves, require a long
running time to merely write out.

Observation 27 (Reduction to decision problems)

Any problem which has an output of polynomial size in the input
can be reduced to a liner number of applications of a decision
problem.

Proof sketch: Consider the decision problem asking “does there
exist any correct output for this input instance, which is smaller
than some natural number x?”. By using binary search over the
output space for a given input instance, one can, in a humber of
probes linear in the input size (logarithmic in the size of the output
universe) determine some correct output using the solution to the
decision problem above.

Theorem 28 (Every verifiable problem admits a Poly,/Expy
finite case algorithm)

For any problem Prob, which admits a general case verification
algorithm V able to decide for any (input,output) pair it the output
is correct for the given input, there exists a hinted algorithm S,
such that for any finite case upper bound on input size nO, there
exists an appropriate hint enabling S to solve Prob[n0] correctly
for all inputs and in time Poly,.

Proof sketch: Given a Verification algorithm, one can immediately
construct an inefficient general case algorithm which produces a
correct output for any given input: Simply enumerating all
potential outputs for an input and using the verification algorithm
to pick the correct one. Given this, the correct output can be
precomputed for any input of size up to n0. There are 2*(n0+1) — 1
such potential inputs. The corresponding correct outputs could then
be stored directly as Hint. An algorithm which, given an instance
in this 2°(n0-1) universe, simply looks up position where the
correct output is stored in the hint, using binary search, takes
log(2™(n0-1)-1) < nO steps to identify such. It can then merely
output the corresponding output, which is Poly,, resulting in a
total running time within the Poly,, finite complexity class.
Corollary: Any verifiable decision problem admits a Linear/Expno
finite case algorithm for any n0.

Since a decision problem has constant output size (namely 1 bit)
only the linear time taken to identify the correct index of the output
determines complexity.

Discussion: Note that this method gives an algorithm to determine
the correct output, not also to prove its correctness. Nevertheless
the correctness for this particular construction can steam from the
construction of the hint itself: The output is correct, because given
the manner in which algorithm S and its Hint were constructed, it
cannot be incorrect. However, given some arbitrary hint
determining if it is indeed adequate is not implied by this theorem.

Complexity: For decision problems, the above approach involves
merely 2*(27(n0+1)-1) applications of the verification algorithm
V. For problems of polynomial output size this is multiplied by the
maximum size of the output universe, which is of the order
270(n0~c) for some constant c. In both cases, executing this
approach directly for any n0 has general case complexity within
EXPTIME, so long as the algorithm V is itself within this class
(e.g. it is in P). While not generally considered tractable,
EXPTIME is not the worst general case complexity class out there.

Theorem 29 (Solving verifiable problems optimally in

the finite case is computable)

For any problem Prob, which admits a general case verification
algorithm V able to decide for any (input,output) pair it the output
is correct for the given input, for any natural number nO, there
exists an unhinted algorithm which determines the optimal
algorithm for solving Prob[n0].

Proof sketch: Any implementation of Approach 25, which
exhaustively enumerates all algorithms and potential hints of joint
size up to at most the size of the algorithm and hint resulting from
the application of Theorem 28 for Prob[n0] will consider the
optimal running time algorithm among them. Hint sizes outside
Expyo are pointless, since an algorithm linear in input+output size
(thus optimal) exists for such a hint. Considering algorithms which,
together with their hints, are of size over Exp,, is again pointless:
the algorithm constructed in Theorem 28 is of very small constant
size, thus allowing the joint size to remain within Expo. As such,
trial of algorithm/hint pairs only within these limits suffices.

Complexity: The complexity of employing this approach without
further refinement is as follows. For every candidate algorithm/hint
combination in the input universe, verifying its correctness can
take at most 2/4(n0-1)+1 applications of the verification algorithm
V and similarly many applications of the candidate algorithm. For
decision problems, the input universe itself is only slightly (by a
very small constant) larger than 2(n0-1)+1. So this reduces to
~2"(2*n0) applications of V and the algorithm itself. These are
within EXPTIME if V and the candidate within EXPTIME
themselves. For problems with larger, but still polynomial sized
outputs, this is multiplied by some factor 2*(O(n”c)) for some
constant c, representing the increased input universe size. This
keeps the complexity within EXPTIME, so long as V and the
candidate are themselves within EXPTIME. The universe of
potential algorithm/hint pair is doubly exponential in nO, making
the total complexity no worse than 2EXP, which is within
ELEMENTARY, thus computable.

Discussion: In practice, the input universe will be much smaller.
Most likely only hints of Poly,, or SemiPoly,, size will be
considered and the family of fixed algorithms for a problem
domain will consist of just 1 or sometimes a very small subset of
those described by Approach 26. This reduces complexity to at
most EXPTIME. Also, most candidate algorithm/hint pairs will not
be allowed to run beyond some desired complexity (most likely
Poly or SemiPoly,) and will not be run on all possible inputs for
verification purposes, resulting in further running time reductions.

Theorem 30 (Solving verifiable problems optimally in
the general case is computable if they have a
determinable collapse threshold)

For any problem Prob, which admits a general case verification
algorithm V able to decide for any (input,output) pair it the output
is correct for the given input, which has a known or determinable
nl such that Explode,;(Prob,l)=+INF for some desired complexity
hierarchy level |, there exists an unhinted algorithm which solves
Prob in the general case complexity corresponding to finite
complexity level I, so long as the verification algorithm V is
belongs to this complexity level itself.

Proof sketch: One can apply the method in Theorem 29 for ever
increasing n0’s (for example taken under repeated doubling or
repeated squaring) until it can be established that the n1 threshold
has been reached. If an upper bound is known for it in advance, n0
can be taken to be directly n1. The method in Theorem 29 is

26 |Page

modified to output not just one suitable algorithm, but all of them.
This multiplies the size of the output of the method by at most the
size of the input universe, making it as large as 2*(2"n0). The
correct algorithm, which solves the general case problem within
the desired complexity, is necessarily amongst this outputted set. In
terms of general complexity theory, this set has size O(1). As such,
the general case algorithm constructed consists of running all such
algorithms (O(1) of them) for any input instance given, and
verifying each of their outputs using the algorithm V, picking the
correct one. So long as the complexity of V is no larger than the
desired class, this results in an algorithm of such general case
complexity class.

Complexity: The complexity of employing this approach without
further refinement is essentially within at most some log(n1) factor
[for repeated doubling] of the complexity of a single application of
the method under Theorem 29 for nl, modified to output any
acceptable algorithm/hint pair (which does not modify the running
time complexity of the brute force approach). As such, as argued
for Theorem 29, this is within 2*(2"n1)), which, ironically enough
is O(1) in terms of general case complexity.

Discussion: Note that by Theorem24 any problem which admits a
general case algorithm of some corresponding complexity (e.g. P)
also has such a fixed nl. In practice, n1 may or may not be
knowable in advance. It can be guessed or some rule for its
determination hypothesized. For example, it can be speculated that
if the finite complexity class has not exploded for 5 successive
repeated squaring applications, then this threshold has been met or
exceeded. Or it could be speculated that its finite complexity class
is monotonically non-increasing with increase in input-size (this is
not always the case).

Note that for the output produced by the approach in Theorem 30
can be further trimmed down, both in practice (as some candidates
are eliminated as more and more input instances are processed) and
via theoretical reasoning, by a researcher which is able to prove
that one such is actually always correct. A formal proof of this may
itself be rather lengthy (e.g. consider the proof for classification of
algebraic finite simple groups, which “has around 15.000 pages,
spread through mathematics literature™). If it exists at all! Given
Godel’s incompleteness theorem (see [11]), there are true
statements expressed in first-order logic over natural numbers
which cannot be proven. The desired proof might happen to be one
of them. In the eventuality a proof exists, a researcher could again
employ this theoretical framework and the approaches described in
this paper to develop an algorithm to automatically find it. This is
possible since verifying formal proofs is in fact a rather straight
forward computer, thus a verification algorithm exists. Finding
such a formal proof, or showing that one does not exists — that is
the hard part.

The significance of Theorems 28-30 is rather major: It shows that
finite algorithms can, at least theoretically, solve almost all
problems currently considered hard — if as of now, only in 2EXP
time — which may itself be a rather long wait. Nevertheless, their
existence allows the problem of finding a solution to a computer
science problem to be rephrased in terms of tradeoffs between the
following three dimensions:

e Running Time of the solution algorithm S.

e Hint Size for algorithm S.

e Running time of computing a suitable algorithm/hint pair
by some automated method, given existing knowledge.

There are undoubtedly many interesting questions and results
pertaining to reductions and relationships between finite case
problems and either general or other finite case problems. These
include the “meta-problems” induced by some general problem,
under some interesting or practical assumptions: the problem of
finding a suitable algorithm for it, of finding a suitable hint for
such and many more. Further interesting questions include
applying the approaches here recursively upon themselves, to
potentially produce faster than brute-force algorithms for solution
finding. We leave such questions outside the scope of the current
paper and propose them as avenues for further research.

One direction which seems particularly useful to us for priority
examination is that of problems which fall in the following
categories:

e They belong to the Poly,/LogRank,=2 finite
complexity class. This entails the existence of a
reasonably small number of potential hints (up to
n0Mog(n0)) — thus making exhaustive search quite
feasible.

e They have known and relatively efficient output
verification algorithms. All NP-Complete problems fall
into this category.

e Preferably they admit natural formulations as decision
problems. Determining satisfiable assignments for a
Boolean formula is one such example (with the 3CNF-
SAT decision problem). Computing Discreet Logarithm
is not.

e There exists some non-trivial amount of solved hard test
cases within existing body of research.

Section 4.3 Reasons for considering finite algorithmics
valuable

The most important argument which needs to be made for
acknowledging the importance of the study of finite algorithmics is
why we should expect that finding a solution to the finite case of
problems is easier than finding one for the general case.

We, the author, present the following arguments as indications that
this is in fact the case:

1. There exist problems which are incomputable in the
general case, but computable in the finite case.
Consider the following problems.

a. For classical computers: Optimal String
Compression — determining the shortest program
which outputs a given string. In the general case this
is equivalent to computing the Kolmogorov
complexity of the string and is incomputable.
However, if we limit the problem to the practical
application of considering only strings of length up
to some nO, and limit the running time of the
program to at most Exp,o, the problem becomes
computable: one can simply enumerate all programs
of length no larger than n0, and run them until they
either time out, produce a wrong string or produce
the desired string. Afterwards the shortest correct
one can be selected. In fact, one could even try to
determine a suitable hinted algorithm using
Approach 25 and some hint generation method
which allows some, or most strings which appear in
practice to be compressed efficiently (NB: With
regard to any algorithm, there are strings which are

27 |Page

incompressible). The original proof by contradiction
stating that Kolmogorov complexity is
incomputable relies on the assumption that length of
the source code of any such algorithm is shorter
than the length of at least one target string. This
however does not apply to the finite case, where
strings have bounded size: A Kolmogorov
complexity computation algorithm can indeed exists
for this case (and does: for example one which
includes precomputed output for each string),
however it is necessarily longer than n0. Thus,
solving the finite case, Expno bound running-time
Kolmogorov complexity is actually in EXPTIME.

b. For Finite Automata: Recognizing Prime Numbers —
using a Finite Automata to determine if a string
denoting the representation of an integer in some
base (e.g. unary, binary, etc.) corresponds to a prime
number. Finite Automata are unable to recognize
this language. So for this computation model,
PRIMES is incomputable. The proof is a relatively
straight contradiction, using the Pumping Lemma
[12]. The problem of recognizing all prime numbers
up to some upper threshold nO however is
computable using Finite Automata: it is in fact a
finite language and all finite languages are regular.
Note however, that different automata are required
for different n0-s.

This illustrates that the finite case can be simpler than the general
case. In fact, it is so for some very practical problems. Kolmogorov
complexity features prominently within Information Theory and
Cryptology.

2.

There exist problems with large thresholds of
complexity explosion. Consider the following problem,
inspired by the Theorem of Classification of Finite
Simple Groups: “Take some sort order for finite simple
groups, such that groups of smaller order appear before
groups of larger order. When tied, consider some other
arbitrary criterion, like number of generators or anything
else desired. Given an index k of a group in this sort
order, and a series of pairs of numbers representing
elements within this group, output the result of the group
operation acting on the elements, under some fixed (but
arbitrary) numbering for them. The length of this series is
logarithmic in the group order. “. The problem asks
essentially to compute group operations consistently
within a specified finite simple group. We can name it
GROUPOP. Here the difficulty parameter is not the input
size, but the order n of the group which also bounds the
input size. As per the Theorem of Classification of Finite
Simple Groups, there exist actually only three infinite
classes (cyclic groups of prime order, alternating groups
of degree at least five and groups of Lie type). All of
these have simple representations. However, there exist
another 27 finite simple groups which do not belong to
any of the infinite families. Out of these 27, the Monster
Group, of order M = ~8*10753, stands out as it does not
have a simple representation. As such, performing group
operations in any of the other finite simple groups is
computationally much faster than in the Monster Group.
For cyclic groups for example doing group operations is
as simple as multiplication modulo the prime which is

the order of the group. This is actually logarithmic in the
value of the group order. For the Monster Group
however, Wilson has described a method involving two
196882x196882 matrices [13]. Doing operations with
these matrices is computationally very expensive,
bringing GROUPOP outside Linear. Some other
constructions have been proposed, however it still
remains that the Monster Group is terribly difficult to
work with. As such, one can say that
Explode(GROUPOP,Linear) = M ~ 8*10753. In fact, if
operations within groups of the other two infinite
families besides cyclic can be done in polylogarithmic
time, we have that Explode(GROUPOP,PolyLog) = M ~
8*10753.

The value 8*10753 is rather large — large enough to be
considered non-trivial. The problem GROUPORP is rather
simple up to this group order, and then it explodes
drastically. Could it not be that something similar
happens to other interesting problems, like Integer
Factorization or 3CNF-SAT? Furthermore interestingly,
given the fact there is a single Monster Group, the
complexity of GROUPOP will ultimately collapse back:
the super-linear complexity for M ~ 8*10753 will
ultimately be smaller than a single log factor of some
larger group order. As such, we can state that
Collapseg«10r53(GROUPOP, PolyLog) < +INF.
Essentially, the finite complexity of GROUPOP is
bitonic — small at first for quite some values, then it
grows drastically large (rather quickly) and then
collapses back to being small. From the point of view of
a general case complexity theory, the existence of the
Monster Group is fully irrelevant. The extreme difficulty
of doing operations there, given the fact it is a singular
finite case, is in fact O(1).

Thus, finite case complexity theory offers a much better
way to describe the structure of this problem than the
general case one.

There exist problems where precomputation specific
to a certain input size is very useful. Consider the
problem of determining the Minimum Spanning Tree for
a given graph with n vertexes and m edges. This problem
is relatively easy and numerous general case algorithms
with near-but-not-exactly optimal complexity exist: from
Kruskal’s O(m*log n) to Chazelle’s near-linear
O(m*alpha(m,n)) [14]. However, there exists one
algorithm by Petite and Ramachandran [15] of optimal
complexity — which, mysteriously enough is still
unknown. Whatever it is, their solution is nevertheless
bound by it. The approach involves precomputation of all
optimal decision trees on log(log(log(n))) vertices. In this
situation precomputation can be completed in O(n),
which is no larger than the complexity of the outstanding
part of the algorithm. As such, the precomputation step
can be done on-the-fly for each instance of the problem,
without any need to store it as a Hint to some hinted
algorithm separately, for purposes of improving running
time performance.

It could be that some very difficult problems (maybe
even 3CNF-SAT) have solutions which involve
precomputations for an input size (difficulty) of larger
complexity class than the rest of the algorithm. If the
result of these precomputations is short enough however,

28| Page

we could simply store them as a Hint to some hinted
algorithm, belonging to a favorable complexity class
such as Poly,/Poly,. Note that computing the hint for
some input size could belong to a much larger
complexity class — such as SemiPoly, or Exp,. However,
this only needs be done once for all inputs of that size.
Once computed, if it is short enough it could be used by
a hinted algorithm to skip this potentially extremely
time-consuming step. We, the author, strongly suspect
that if practical solutions for finite or general case 3CNF-
SAT problems exist, they will involve reasonably sized
hints which require nevertheless large amounts of
running time to compute.

Other expressive computational models show
significant drop in complexity from general case to
finite case. Consider potentially the closest relative of
the Turing Machine — the Finite Automata. Consider a
regular language with an infinite number of words. It can
be succinctly described by a Deterministic Finite
Automaton with some number of states. This number
could then be reduced by computing the minimal
automaton for the given language. So long as the
language has infinitely many words, this is the best
which can be achieved. However, when the attention is
directed to a finite subset of this language — namely that
of words which do not exceed some fixed finite length, it
has been shown that the number of states could be
reduced even further, using something called a
Deterministic Finite Cover Automaton. This is basically
an automaton which correctly recognizes the language up
to words of at most the specified length, but it is allowed
to error on anything longer. This is analogous to
considering the finite case of some general case problem,
where the sought-after solution is a specification for a
Finite Automaton, not a registry machine. Deterministic
finite cover automatons are expected to have a
significantly smaller number of states than their
counterparts for the unrestricted language. In fact, it has
been shown that they have a smaller number of states
than even their counterparts which recognize just the
finite language precisely (are not allowed to error on
longer words) [8] [16].

It could be that classical computers exhibit a similar
phenomenon for at least some languages - namely that
complexity of recognizing on such up to some finite
length is much smaller than that of recognizing it on the
general case. While classical computers are a much
stronger computational model than finite automata, the
two are still closely related. For example, every bounded-
space registry machine algorithm can be represented as
an automaton which is initially fed the input and them
some number occurrences of a special symbol, each
corresponding to one clock tick of processing by the
classical registry machine. The states of such an
automaton are in fact the all the memory configurations
the registry machine could encounter during its
execution. While this representation is inefficient, it
serves to illustrate the close relationship between the two
computational models, for the finite case.

Even for machines of larger or incomparable
computational power (e.g. Quantum Computers, or the
theoretical Blum-Shub-Smale machines [17]), the fact

there exists sufficiently expressive computational models
(the Finite Automatons) which experience complexity
collapse for the finite case, serves as an indication the
same could occur for these models also.

There exist interesting problems which are outside
2EXP on the general case. Consider any EXPSPACE-
Hard problem for instance. Reachability in Petri Nets
[18] is quite practically interesting and has recently been
shown to be outside ELEMENTARY, thus outside 2EXP
[19]. Deciding if two regular expressions which allow
squaring (requiring exactly two adjacent copies of the
operand) represent different languages is in EXPSPACE
[20], as is the validity problem for extended linear
temporal logic with times. Besides these, many problems
within Game Theory are PSPACE-Complete (e.g.
solving generalized Tic-Tac-Toe), while others still are
actually incomputable.

For these categories of problems, there is no hope of
solving them in practice by discovering an efficient
algorithm for the general case. The only hope to ever
solve these is within finite algorithmics — solving not the
problem in general, but some restriction of it to a finite
case. Here, one can apply Theorem 28 to show that a
Polyn0/Expn0 algorithm exists. Finding one however,
may be outside 2EXP since the verification algorithm
itself could be outside 2EXP. Nevertheless, the existence
of a Polyn0 algorithm (if but of exponential size) shows
that the finite case is indeed easier than the general case
for interesting practical problems.

A prominent result within finite algorithmics will be one
which gives a solution to one of these practically
important, but generally intractable problems for some
non-trivial practical upper bound.

Finite case problems are a particularization of the
corresponding general case problems. Essentially, we
as researchers have reduced the practical finite-case
problems we are interested to solve to some potentially
harder ones — namely the general case. While sometimes
the general case is easy enough, this is not always the
case. As the easiness of 2-CNF-SAT relative to arbitrary
Boolean formula satisfiability illustrates, sometimes the
particularization is much easier than the general case.
Further research should focus on relationships between
finite case and general case for specific problems, to
determine where this is the case and where not. The
theoretical framework introduced in Section 3 serves as a
tool.

There exists an automated method for finding an
optimal solution to verifiable problems in the finite
case. The proof sketch of Theorem 29 shows how an
optimal algorithm for such problems can be constructed.
There exists an analogous result from Jones [21] for
general case verifiable decision problems. He essentially
constructs an algorithm which runs, in a dove-tailing
fashion all conceivable algorithms until one stops and
produces the correct output. While asymptotically this is
optimal for the general case, the hidden constant is
astronomical — it is exponential in the index of the
suitable algorithm in the enumeration. This makes it
generally unusable in practice. Note that Jones’ method
does not actually identify the suitable algorithm. For
each problem instance, there could be some different

29| Page

algorithm which finishes first and outputs the correct
answer (which is then verified by the verification
algorithm). In the finite case, on the other hand, after
spending some initial (potentially very large) amount of
time, the optimal algorithm is determined (it’s source
code becomes available). Thus, it can thereafter be
directly applied to any instance (up to the finite upper
bound) where it performs efficiently enough. Using
Jones’ method for the finite case would entail dealing
with the astronomical constant on every run of the
algorithm — on every instance. Furthermore if a problem
did not admit a general case efficient algorithm, his
method no longer yields an algorithm of optimal
complexity, since the index of the most efficient
algorithm is no longer a constant.

8. There have been prior successful applications of the

approach of automatically generating algorithms. The
field of Al and Machine Learning, particularly Neural
Networks is a perfect example where trying out and
adjusting an algorithm, within a certain family results in
something very useful. For most Al and Machine
Learning applications (such as image recognition), the
problem researchers were trying to surmount was the
apparent lack of proper succinct description of a method
to determine the correct output for a given input. For
example, describing formally what “an image of a cat”
was (or to go further, what “an image of a happy person”
was) proved very difficult. Nevertheless, this was
circumvented by employing an automated method of
trial-and-error to essentially determine an algorithm
which is good enough.
The same could be applied to the situation where the
difficulty lies not in identifying a formalism to describe
the input/output relationship, but in finding an efficient
algorithm to compute it, if but only in practice. As with
Al and Machine Learning, we can now regard this
process as the result of a combination of automated trials
and researcher insight, not just of the latter.

The arguments above which serve to indicate that finite-case
problems are indeed easier to solve (at least to us humans,
potentially aided by computers) than their general case
counterparts. However, there are two more arguments of a more
abstract nature to indicate the existence of value in the approaches
presented.

1. There exist problems which admit rather simple and
short efficient algorithms, but which require complex
theory to prove their adequacy. The clearest example
can be considered the string matching algorithm due to
Knuth-Morris-Pratt (KMP) [22]. It has less than 10 lines
of code, a single method with no recursion, loop-nesting
of at most 3 and all its expressions are over no more than
5 variables. Nevertheless, the theory behind it, especially
with regard to proving its linear running time
complexity, is the most likely cause why it has not been
discovered earlier.

2. Physical phenomena could exist which can be
harnessed to allow rapid speedups for computations,
but at some great cost. Given current mainstream
understanding of physics, concerning time-dilation, if we
were able to send a computer with sufficient battery
power to a place far away from any gravity wells (like

planets, stars or black holes) and have it stand as still as
possible relative to Earth, some important speedups can
be attained. Other phenomena might exist which to allow
for much greater speedups (quantum non-locality seem
like a good place to start a search). These however, might
entail travelling to distant regions of the Cosmos, or
expending large amounts of resources, like battery
power. However, this can be regarded as a one-time-cost.
With the methods provided for by finite algorithmics,
such a sped up computer could then rely back the optimal
algorithm (e.g. via radio waves) for some problem.
Thereafter, we could use it solve all practical instances,
without the need to incur the one-time-cost ever again.

Section 4.4 Application of techniques to three well
known problems

In this we present some directions for practical application of the
theory and techniques presented within this paper to three hard
problems. They are intended to be viewed as just an example of
how the quest for adequate solutions can be altered with the
introduction of finite-algorithmics. It is outside the scope of this
paper to propose (much less test experimentally) a fully specified
approach or method which can be employed to solve them.
Nevertheless, we, the author, are confident that ideas formulated
within the context of finite algorithmics — either based on the ones
presented below or others — will eventually lead to an adequate
solution to such, if one exists.

The main intended contribution of this section is to show, by way
of example, how the change in reasoning due to finite algorithmics
can lead to fundamentally different avenues of research for hard
problems, from the ones currently pursued by computer scientists.

Section 4.4.1 3CNF-SAT

The following ideas can be applied to solving 3CNF-SAT, in the
context of finite algorithmics:

1. Consider only families of hard cases. For example, for
an n-variable formula, do not include in analysis clause
configurations which are conjunctions of two or more
formulas over less than n variables, as such could be
solved recursively separately. Also ignore families of
known easy cases. For current heuristics published in
literature this means formulas with less than 2 or more
than 5 clauses per variable.

2. Discover specific problem structure incrementally.
Examine what makes some 20-variable 3CNF-SAT
formulas harder to solve than others, for some algorithm
or family of algorithms. It could be the existence of some
tuple of clauses or some computable trait of a larger
subset of clauses. Then look at 21-variable formulas and
find which additional traits (besides those applicable
from the 20-variable case) predict hardness. Then at 22-
variable and so on. How many additional “hard”
formulas specific to an n+1 — variable case are there
(excluding those for formulas in up to n variables)? Do
they belong to some finite number of families (we
strongly expect a negative answer)? Is the number of
such growing rapidly or slowly? How can they be
described succinctly so as to potentially allow their
storage as hint to some algorithm? Do same for 200- or
2000- variables randomly built 3CNF-SAT formulas.
Such analysis could be aided by tools from Al and

30| Page

Machine Learning, which may discover unexpected or
counter-intuitive correlations.

Discover what makes candidate algorithms actually
solve hard instances when they eventually manage it.
For hard instances examine what actual choices (e.g.
“lucky random assignments”) allowed their eventual
resolving? How do these choices correlate with the input
instance (or part thereof) and between themselves? Is this
knowledge (or at least part thereof) common to several
hard instances? Can all such knowledge for some n-
variable instance difficulty be represented succinctly and
efficiently enough so as to allow a Poly,/Poly,
algorithm to use it to solve all much faster on subsequent
runs? Is at least part of it common to many instances?
Like with point 2 above, Al and Machine Learning tools
might prove very valuable.

Discover predictors for candidate algorithms non-
performance. Discover similar correlations as those in
point 3 above, but for situations where a candidate
algorithm performs very poorly. How can “really poor”
choices be described formally and succinctly, so they can
be avoided on subsequent runs?

Consider a family of algorithm/hint pairs (or a fixed
algorithm with a family of hints). Discover favorable
and unfavorable correlations between parts of the
content of the algorithm/hint themselves and
performance/adequacy in trial runs. What are good
predictors for good/poor performance? Is it having a
particular while loop in a certain place? Or doing
random-restarts in some describable fashion?
Researchers have been more or less attempting this step
manually so far — leading to the discovery that random
restarts are key to performance of advanced SAT Solvers
[3]. However, formal methods from Al and Machine
Learning and not only could be employed to deduce
many more such correlations much faster.

Consider correlations between memory state of
candidate algorithm within a family and
performance. It could be that for some family of
algorithms, a certain memory state (or part thereof), if
encountered at runtime, is strongly correlated with very
poor performance (for example a particular choice of
random assignments, or set of impossible assignments
deduced). It can be regarded as similar to steps 3, 4 and 5
above. Unlike steps 3 and 4, analysis aims not to learn
something about the structure of instances themselves
with regard to the candidate, but about the runtime
behavior (which can be common to multiple candidates
within a family) across some test battery, thus learning
something about the desirability of having the memory
state characterized in a particular fashion. Unlike step 5,
here the analysis focuses not on the source code / hint
contents used, but on the actually runtime memory state
(which might be common at least partially to several
algorithm/hint pairs). Like with points 2-5 above, tools
from Al and Machine learning (and not only) could be
employed.

Perform the same analysis as step 6 above not for a
single memory state but for a short sequence of such
states. Essentially, this calls for analysis to be expanded
from examining single snapshots of memory to
examining short “movies” of such snapshots (not

necessarily sequentially chosen).

8. Use some form of automatic recombination and
selection method to generate new candidate
algorithm/hint pairs and maintain the set under
consideration within desired size limits. This entails
essentially using the information gathered in points 2-7
above to rank, modify and combine algorithms / hints
such that one representing an adequate solution is found
much quicker than by exhaustive enumeration. An
example of a modification is to make an algorithm do a
full or partial restart every time its runtime memory state
can be characterized as “unfavorable” as per data
obtained under methods 6-7 above. An example of a
combination is to run two or more algorithms in some
dove-tailing fashion for a number of steps and then
decide how to continue based on their joint memory
state. Other methodologies like those specific to genetic
algorithms or again those employed in Al and Machine
learning presently can be readily employed. Ranking or
more specifically selection is required to keep the
candidate set size within the space limits imposed by
whatever hardware is attempting to find the solution.

9. Use ideas 1-9 above and others to incrementally generate
algorithm/hint pairs for increasing difficulty. This way,
the information collected with regard to solutions of
instances of lesser difficulty (smaller number of
variables) can be exploited to speed up and obtain similar
information more difficult instances.

The ideas described above are meant to speed up some automated
or semi-automated search for a suitable algorithm. However, one
such may not exists. Even in that case, having a good choice of a
heuristic algorithm, accompanied by a good choice of a hint can
result in a huge drop in running time (if though perhaps not enough
to make it fit some desired finite complexity class like
SemiPolyn0). It could be that such drop is much higher than the
time actually consumed to generate the pair. After all, as per
Theorem 28, 3CNF-SAT admits a Polyn0/Expn0 algorithm. So the
quest is actually for a more acceptable tradeoff between hint size
(more specifically hint generation running time) and algorithm
running time.

A final trick could be employed in practice. The universe of
potentially hard formulas over n variables is rather large. It is of
the order of Comb(4*Comb(n,3),4n)*2”(4n) for formulas with up
to 4 clauses per variable, which is much larger than 2”n and even
than 2°\(4n). However, in practice we might be interested in solving
just a very small subset of these — namely the ones which occurred
as a reduction of some other practical problem. Sometimes, it could
be that we are actually interested in solving a single very lengthy
formula — one for example giving a winning strategy for a complex
military game position, or an optimal design for a microchip. In
such a case we can particularize further. When using ideas 1-9
above (and any others for that matter), we will consider only
expressions which are formed by a subset of the clauses appearing
in the original large instance. Thus, the universe of instances for all
variable sizes is cut to ~2”4n which is a huge reduction.
Furthermore, the ideas and methods described can now make use
of structure specific to the original input instance to arrive at a
solution much faster. The only draw-back is that the algorithm /
hint pair can be expected to perform adequately only on the
original input instance set (which may have a single element). This
nevertheless, can be an acceptable and desirable tradeoff.

31| Page

Section 4.4.2 Kolmogorov Complexity

Problems which in the general case are provably incomputable due
to reduction from Kolmogorov complexity typically relate to string
compression or have to do with entropy extraction (generating
more randomness from less such). The two are not unrelated.

In this subsection we focus our attention on string compression.
Formulating the problem for practical use in this case involves
more than just restricting the input size. Formally we consider a
string compression problem to have the following statement:
“Given a set of strings of length no more than n0, determine some
pair of (potentially hinted) algorithms Compress,, — which takes an
input string and produces a digest — and Decompress,, — which
takes a digest and produces the original string — such that the digest
of maximum (or average) length is as short as possible (or simply
“short enough”) and both algorithms belong to Poly.o/Poly,, (or
some other acceptable finite complexity class).”

The above is an adaptation of the original formulation of
Kolmogorov complexity, which referred to compressing a single
string by using an algorithm of unbounded complexity (but which
surely terminates) to produce it. The above formulation allows for
the input set of strings to contain a single element as well.
However, in practice it is more likely that a single solution is
sought which can be used to compress several strings (potentially
all the strings of length n0).

Under the above formulation, all ideas from Section 4.4.1 could be
adapted here as well. The only difference will be in verification —
as more and more algorithms are considered, performance entails
not only examining running times but also lengths of generated
digests.

Some ideas specific to string compression, formulated in the
context of finite algorithmics are the following:

1. Determine short incompressible strings which appear
as substrings within the input set. It is a well-known
information theory result that for any length there exist
incompressible strings. This can be shown via a simple
counting argument for a binary alphabet. Furthermore,
the density of incompressible strings is rather large.
Using this information, one can attempt to “break down”
the input strings into incompressible “atoms” which can
then serve as part of a hint to an algorithm which only
describes how to assemble them together to obtain the
desired string. Incompressibility within this context does
not need to be strict. A reduction of less than 3-4
characters for example could make a large string be
considered just as well incompressible.

Note that doing this is incomputable in the general case
for sufficiently large strings. Nevertheless it is very
computable within the finite-case formulation above.

2. Given a list of short strings (atoms) determine a
method which uses such to build a larger target
string. One straightforward such method is to break the
target string into concatenations of atoms and then to
store only the index of each such for each part. More
sophisticated methods could involve exploiting
correlations between contents at different positions (e.g.
repeat adjacent occurrences of an atom).

3. Apply ideas 1-2 above recursively, on the digest
generated by the method in idea 2. This allows further
compression based on the non-randomness of the pattern

in which atoms themselves occur within a target string.
Note that the input for the recursive step is typically
strictly shorter than the original input — which was
already compressed by a prior application. The final
output could then just include a number indicating how
many times recursion was applied.

4. Consider space-time tradeoffs in deciding which short
strings to keep as hint to the solution algorithm and
how to represent them. Atoms themselves may not
need to all be kept in their lengthy, full form. While a
single atom is considered incompressible, a list of several
may have a more succinct representation than simple
enumeration of all such. For a binary alphabet, a suffix
tree or even a simple trie may offer an efficient
improvement. However, there may be other shorter
representations which in turn require longer processing
times to allow extraction of some “k-th atom”.

5. Exploit randomness. Consider producing methods and
algorithms which make random choices. In the context of
decompression, such can produce the desired original
string only with some probability (e.g. 1/2 or 2/3) — and
in the other cases other produce something else or exceed
desired running time. In the context of compression, such
could produce valid digests only with a certain
probability.

6. Consider error-correction codes. In the context of idea
5 above, consider padding some lengthy atoms using
error correcting codes. While counterintuitive, this could
potentially allow for shorter algorithms / digests to be
generated — since one such need not output a precise
string, but any of its correctable forms. Furthermore,
simple detection of errors could be reason for rerunning
said algorithm automatically for a different random seed,
thus improving the probability of correct output under
idea 5. Finally, given some input set of strings, all atoms
within it might be sufficiently separated in terms of
Hamming distance. Thus, there may be no need for
additional padding. An algorithm which only very
occasionally outputs the correct atom and the rest of the
time something which is not an atom can be combined
with an algorithm (like a Deterministic Cover
Automaton) which simply recognizes the language of
atoms for the given input string set.

Finally, all results pertaining to Kolmogorov extractors (entropy
extractors), polynomial-time randomness (producing outputs which
are indiscernible from random by any polynomial time algorithm)
and related topics are relevant and can be further refined to apply
to this context of finite case formulation. A prominent researcher in
this field is Prof. Marius Zimand (see [23] or [24]).

As illustrated in Idea 6 briefly, a related problem to string
compression is finite language recognition: “Given a set of strings,
produce an algorithm which can determine if an input string is
within this set or not.” This related problem is extremely relevant
to finite algorithmics. Firstly, any decision problem can be
formulated in terms of determining if an input instance is within
the set of instances for which the answer to the decision problem is
“Yes”. In any finite case of any problem, such a set is finite as
well. A solution to efficiently deciding membership within this set
solves the original problem.

In fact, compression of the set of outputs of some problem (e.g.
3CNF-SAT) on some small finite input universe, such that set

32| Page

membership can be decided efficiently, can and should be
employed in the course of running automated methods for finding
its solution for larger input sizes (difficulties).

The starting point in the case of a decision problem for example,
can be the Deterministic Finite Cover Automata for the set of
strings which represent input instances with a “Yes” answer. Using
such, group membership can be decided very quickly (linearly in
instance size), however the size of the hint (the actual description
of the DFCA) can grow too large. Nevertheless, we the author
consider the relation between DFCAs and acceptable algorithms
(in terms of running time / hint size / hint generation time) for set
membership decision problems as a prime candidate for future
research. We see such research as both general and specific to a
particular problem domain (e.g. to the set of satisfiable 3SCNF-SAT
formulas over at most n0 variables).

Section 4.4.3 Integer Factorization

Factoring large integers can be solved efficiently by quantum
computers, using Shor’s algorithm [25]. Nevertheless, a similarly
efficient algorithm for a classical computer is yet to be discovered.
Integer factorization occurs mainly within the realm of cryptology
and generally pertains to identifying a prime factor of a large
semiprime number. Besides adaptation of the ideas from Section
4.4.1 which can prove useful, an idea specific to this problem is the
following:

1. Identify and store “hard” primes. Given a target range
for the integer to be factored (e.g. 512-bit or 1024-bit
sized), and some state-of-the-art existent algorithm (e.g.
Pollard’s Rho algorithm or GNFS, or a combination of
such), determine what constitutes “hard primes” for it.
These are prime numbers which, when they appear in the
composition of an integer to factor, cause the algorithms
running time to increase drastically. If the number of
such “hard primes” is relatively small in relation to
maximum value of the integer to factor, they could all be
stored. Even if there are relatively many such, ideas from
Section 4.4.2 could be employed to get a more succinct
representation of this set, allowing it to be enumerated.

The above idea, steams from the following anecdotal empirical
experience of the author. Many years ago, he participated in an
open factorization challenge (which was part of a larger computer
science contest), which asked contestants to factor each of 10 large
numbers within a week. The author encountered the following
situation: The first 7 were relatively easy to factor and he managed
to factor the 8" and the 9™ as well using some more advanced
techniques. However, the 10™ one seemed unbreakable. At that
point we considered the following question: “How could the
problem settlers have come up with such a hard case in such short
a time [it was known to him that they themselves had only about
one week to prepare the challenge]?”. Given this, he tried the
following: He searched on the internet for the primes which
showed up as factors for the other two hard cases — namely the 8"
and the 9. He then identified a small number of short lists of
primes which featured them. He then used a computer program to
try out each of the primes on those lists against the hard 10"
challenge case. To his delight, this worked. The “hard prime” for
the 10" case was in fact taken from a list on the internet. This
experience above serves to indicate that generating “hard primes”
is no easy task. Like with 3CNF-SAT, most large instances of
Integer Factorization are easy to solve. Those which remain may
be hard due to the presence of some of these hard primes in the

solution. ldentifying all such and, if there are not that many, and
including them as hint to some hinted algorithm, might make
integer factorization easy for all practical sizes even for a classical
computer.

Discussion

We have discussed the significance and implications of most
results and theory throughout the paper, close to the place of their
introduction. In this section we present a few ideas of more general
significance.

The results in Section 4 serve to illustrate that analyzing a problem
for the finite case, rather than on the sometimes more difficult
general case holds value. Problems which are very hard (or even
impossible) to solve in the general case may have acceptable finite
case algorithms. Furthermore, the search for suitable algorithms in
the finite case can be automated or sped up using computers.

The introduction of finite algorithms allows us, as humans to
reason about hard problems differently. Ultimately, within the
framework introduced in this paper one could ultimately prove
that:

1. P <> NP. For example by proving that for any large
enough finite input size upper bound n0, the length of the
shortest hint for a Poly,q time algorithm which solves it
is strictly larger than for n0-1. This does not necessarily
entail that NP-Complete problems could not be solved in
practice.

2. P = NP. For example by providing a polynomial time
algorithm which constructs a hint for any finite input size
upper bound n0 for an algorithm of bounded PolyRank
time complexity. This could be further restricted to
practical significance, by providing a Poly,, algorithm
for hint construction for a Polyo/Poly, algorithm.

3. P = NP or P <> NP but we really do not care about
the distinction for practical purposes. This could be
either because an efficient algorithm and hint have been
identified for all practical bounds (favorable case) or
because it has been proven that the shortest hint size for
most practical cases is too large (unfavorable case). In
the former situation, if P<>NP this essentially happens
for input sizes outside of humanity’s practical zone of
interest, while in the latter, if P=NP this again happens
for too large input sizes, such that the drop in complexity
in the general case is in fact of no practical use.

The same discussion as above applies to the study of relationships
between other complexity classes (such as between P and
PSPACE).

The results and techniques presented in this paper can be applied
not only to hard problems (PTR and above), but also to those
which are relatively easy but for which we would like to identify
even more efficient algorithms (TR). One such candidate is
multidimensional range querying. An algorithm which breaks the
“curse of dimensionality” — if such exists — could be sought and
found using the same approaches.

Ultimately, we expect the change in mindset and in focus of
research resulting from rephrasing a problem in terms finite
algorithmics theory to lead, in the near future, to practical solutions
for some of the hardest computer science problems which have
been haunting humanity for many decades.

33| Page

Conclusion and further research

Throughout this paper we have identified several avenues which
we consider prime targets of future research. We briefly recap them
here:

1. Examining relationships between different finite
complexity classes. This can pertain to relationships
between different finite complexity classes for the same
problem domain (e.g. for different n0 upper bounds) or
between different problem domains (e.g. resulting from
reduction of one problem to another). Also, they could be
unspecific pointing out interesting results for finite
complexity in terms of natural functions in general
without the need for them to represent something
specific.

2. Examining relationships between finite complexity
classes and general case complexity. Similarly this can
occur within a problem domain, connect several problem
domains or be unspecific, pertaining only to natural
functions in general.

With regard to the these, we ask simply “What are interesting
results which fall into these categories?”. We presented a few
elementary ones ourselves in this paper, in Section 4.1.

In addition to the above, we propose the following directions for
future research, which seem to us important:

1. Investigating relationships between Finite Automata
and efficient Hinted Algorithms for the finite case.
Limiting input size, running time and usable space to
some finite bound allows a problem to be solved within a
computational model less powerful than a Turing
machine. Namely, any algorithm on a classical computer
which has bounded memory size and is limited to a
maximum number of steps to perform (finite case
complexity) can be accurately represented by a finite
automaton over a ternary language: The states of the
automaton represent the memory configurations which
can be encountered during execution, transitions
correspond to the small changes an algorithm can
perform in one step leading from one memory
configuration to another and the ternary language
represents the clock ticks which the algorithm consumes.
The first part of an input word is the binary
representation of the input instance for the original
problem, and all the rest are 3s. If the automaton accepts
on such a constructed input, so does the corresponding
classical computer algorithm. Ironically enough, not all
automatons defined in this fashion have corresponding
classical computer algorithms — a transition within an
automaton can be from a corresponding memory state to
any other, while for a classical computer a transition (one
operation) only changes one word of memory (in the
RAM model) at a time - thus it can point only to very
similar states. While direct automaton construction and
minimization based on the observation above may not
lead to a time-wise feasible approach to solving a
problem, conceptually it can offer deep insights. The
relationship between the two computational models for
the finite case warrants further research.

2. For a specific problem domain investigate the growth
of minimum hint size as the finite upper bound

increases. The fact a problem is limited to the finite case
does mean the upper input size (difficulty) bound should
remain fixed during analysis. While for practical
applications existent at some moment such bound is a
definite, effectively reaching it may entail examining
correlations between solutions for smaller ones. One very
interesting question is the following: “Given a problem
Prob and some target finite complexity class for an
efficient algorithm, how does the size of the shortest hint
vary with the upper input size (difficulty) limit n0?” For
general case solution, the answer is very simple: “It is 0
for all cases”. Finite algorithmics however allows further
nuance.

Finally we propose a specific, explicit question framed within the
theory of finite algorithmics which, when answered, will give the
strongest indication ever - if not a proof — for deciding the classical
P=NP problem.

Consider some fixed, sufficiently expressive hinted algorithm.
Such an algorithm can simply be one which receives, as part of the
hint, the index of a more elaborate algorithm from the finite family
described in Approach 26 and then runs such on the remaining hint
and input instance. The family in Approach 26 can be considered
to include as “predefined types” all popular data-structures and
solvers for general case problems which are commonly known in
literature as of November 2019.

Given the above fixed algorithm, answer the following question:
“What is the minimum length of some required hint, which
allows it to decide satisfiability for any 3CNF-SAT formula
over at most 2720 variables within running time Poly,n?”.
Then answer the same question for 2430 and 2/40.

Firstly, if the hint sizes are small enough, answering these
questions constructively will give the most efficient method for
solving 3CNF-SAT in practice.

Secondly, by examining how the shortest hint size required grows
for the 2720, 230 and then for the 2240 upper bounds on number
of variables, one can get the strongest indication — if not even a
sufficient proof — with regard to whether P=NP. If the hint sizes
increase (at least significantly), this is a very strong indication that
P<>NP. In fact, the only way this could happen and still have
P=NP is if the additional sophistication in the structure of the
3CNF-SAT with an increase in the number of variables, drops to 0
beyond a certain finite bound (similarly to that of GROUPOP
beyond the order of the Monster Group) above 2740. We, the
author, believe it to be extremely unlikely for 3CNF-SAT to
behave so. Conversely, if hint sizes do not (at least no
significantly) increase this would be a crushingly strong indication
that P=NP.

Finally, if we were asked to take a guess, we would expect the
answer to the above question to indicate a rather slow, but positive
growth rate. Most likely on the order of Linear,y or Polyy. This
would indicate that NP is outside P, however it would place it well
within Poly, or SemiPoly,, in practice. Furthermore, depending on
how difficult computing such a hint proves to be in the general
case, it place NP outside P but below EXPTIMP.

We conclude the paper here

Vitae

Mircea Digulescu is a computer scientist and software engineer. He

34| Page

was awarded bronze medal at CEOl 2004 as well as 4" and 10"
positions at ACM SEERC 2005 and 2006 respectively. He is still
active in competitive programing on Codeforces where he had
reached the first division. He has obtained Bachelors and Masters
Degrees in Computer Science at from University of Bucharest —
Faculty of Mathematics and Computer Science, where he had also
been studying as a PHD Candidate in applied computer science.
His main interests are within Complexity and Computability
Theory, Game Theory, Algorithms and Data Structures and

Cryptology.
Acknowledgments

No organizations funded the research presented in this paper. The
author’s last affiliation is PhD candidate at the University of
Bucharest, Department of Computer Science of Faculty of
Mathematics and Computer Science. The author is currently an
independent researcher. Statement of interest: none.

I would like to thank late researcher Mihai Patrascu for his lecture
held at an a training camp for competitive programming
contestants many years ago, where amongst other things, he
The tables below detail the maximum estimated tractable difficulty
for the finite complexity classes. It asserts 10 MFlop/s for single-
core on commodity hardware (from empirical Codeforces.com
experience), 83 TFlops/s for single-core on super-computer grade
hardware, a number of 2 million cores for the fastest super-
computer and 60 million for all the TOP500 super-computers

Also, no similar bounds are provided for a quantum computer.

revealed the existence of a deterministic linear time algorithm for
solving Minimum Spanning Tree problem, which worked only
when the input size was greater than 10780. His remark that
anything below this size was solvable in O(1) served as an
inspiration which ultimately contributed to the discovery of the
ideas in this paper.

Warm thanks also to the few beautiful persons who inspired strong
interest for solving hard computer science problems in practice.

They are, in this order, Anca, Tanya, Nicolet sinonim-obiectiv,
Ctlina Ghiorghi, Syuzi Mrktcharyan, Florina Petre, Laura Pana,
and, special thanks for being synonymous of the year 2024 to Eliza
(mention to Yarina 22) and to exoplanet Anastheizia Anna2.

Many warms thanks to the rest of the beautiful persons, especially
to all my beloved synonymouas (with the meaning of the definiton
of love), named and unnamed, registed in RUCS or not, as well as
to my friends.

This paper would not have existed without them.

A. Annex 1

combined (data compiled directly from
https://www.top500.0rg/lists/2019/06/). The values for multicore
architectures (supercomputers) assume the algorithm can be
parallelized perfectly. Furthermore, these bounds are for a classical
computer. Where random data is required, depending on its quality,
generating one such word (or bit) may take longer than 1 Flop.

ExpRank = 1. For Exp | Single Core | Single Core Super | Top Super | Top 500 Super

in general, divide | Commodity Computer Computer Computers combined

values by 8.

1 second 16 32 46 50

1 minute (60s) 20 36 51 54

1 hour (3600s) 24 40 55 58

1 month (2.6 MS) 31 47 61 65

1 year (31.5 MS) 33 49 64 67

10 years (315 MS) 36 51 66 70

100 years (3.15 TS) 38 54 68 72

SemiPoly Single Core Single Core Super | Top Super Top 500 Super Computers
Commodity Computer Computer combined

1 second 35 179 568 725

1 minute (60s) 56 253 761 963

1 hour (3600s) 86 353 1010 1264

1 month (2.6 MS) 162 580 1553 1923

1 year (31.5 MS) 201 693 1818 2241

10 years (315 MS) 245 814 2096 2578

100 years (3.15 TS) 295 955 2410 2953

35| Page

https://www.top500.org/lists/2019/06/

Quadric Single Core | Single Core Super | Top Super | Top 500 Super Computers
Commodity Computer Computer combined

1 second 3162 9*1076 13*10"9 71*1079

1 minute (60s) 24*10"3 70*10"6 100*1079 547*10"9

1 hour (3600s) 190*10"3 0.55*1079 0.77*10"M2 4*10M2

1 month (2.6 MS) 5.1*1076 15*1079 21*10M2 114*10M12

1 year (31.5 MS) 18*10"6 51*1079 72*10M2 396*1012

10 years (315 MS) 56*1076 162*10™9 229*%10"M2 1.3*10™M5

100 years (3.15 TS) 177*10"6 511*1079 723*10"M2 3.9%10M5

Poly Single Core | Single Core Super | Top Super | Top 500 Super Computers
Commodity Computer Computer combined

1 second 342 18*1073 0.5%10"6 1*10"6

1 minute (60s) 1.0*1073 45*1073 1.2*1076 2.4*10"6

1 hour (3600s) 2.8*10"3 115*10"3 2.8*10"6 5.6*10"6

1 month (2.6 MS) 14*10"3 492*107°3 11*10"6 22*10"6

1 year (31.5 MS) 24*10"3 847*101"3 19*10"6 37*1076

10 years (315 MS) 41*%10"3 1.4*10"6 30*1076 60*1076

100 years (3.15 TS) 69*10"3 2.3*10"6 48*1076 95*1076

Linear Single Core | Single Core Super | Top Super | Top 500 Super Computers
Commodity Computer Computer combined

1 second 1077 10n14 10720 10721

1 minute (60s) 108 10715 10722 10723

1 hour (3600s) 10710 1017 10723 10725

1 month (2.6 MS) 10713 10720 10726 10728

1 year (31.5 MS) 1014 10121 10727 10729

10 years (315 MS) 10n15 10122 10728 10730

100 years (3.15 TS) 10715 10123 10729 10731

PolyLog Single Core | Single Core Super | Top Super | Top 500 Super Computers
Commodity Computer Computer combined

Same as Linear

For LogRank <= 1+log(log(n)) and Const the growth rate allows inputs of almost any practical size to be solved in a very short amount of time,
usually within much less than a second. Of course, sometimes in practice the exact LogRank mattes — for example when searching for a suitable
value within an exponential universe of alternatives.

Bauer, D. (2018). Automated design of tendon-driven soft
foam hands using Markov-Chain-Monte-Carlo

References L

36|Page

10.

11.

12.

13.

14.

15.

16.

17.

18.

optimization methods (Doctoral dissertation, PhD thesis,
Master’s thesis, Karlsruhe Institute of Technology, 2018.
10, 32, 39, 40).

Goldberg, E., & Novikov, Y. (2007). BerkMin: A fast
and robust SAT-solver. Discrete Applied
Mathematics, 155(12), 1549-1561.

Alouneh, S., Abed, S. E., Al Shayeji, M. H., & Mesleh,
R. (2019). A comprehensive study and analysis on SAT-
solvers: advances, usages and achievements. Artificial
Intelligence Review, 52, 2575-2601.

Sohanghpurwala, A. A., Hassan, M. W., & Athanas, P.
(2017). Hardware accelerated SAT solvers—A
survey. Journal ~ of Parallel and Distributed
Computing, 106, 170-184.

Tiwana, H., & Singh, R. K. (2015). Analysis of Busy
Beaver. International Journal, 5(6).

Chaitin, G. J. (1975). A theory of program size formally
identical to information theory. Journal of the ACM
(JACM), 22(3), 329-340.

Floyd, R. W. (1962). Algorithm 97: shortest
path. Communications of the ACM, 5(6), 345-345.
Campeanu, C., Santean, N., & Yu, S. (2001). Minimal
cover-automata for finite languages. Theoretical
Computer Science, 267(1-2), 3-16.

Manome, N., Shinohara, S., Suzuki, K., Tomonaga, K.,
& Mitsuyoshi, S. (2019). A multi-armed bandit algorithm
available in stationary or non-stationary environments
using self-organizing maps. In Artificial Neural
Networks and Machine Learning—ICANN 2019:
Theoretical Neural Computation: 28th International
Conference on Artificial Neural Networks, Munich,
Germany, September 17-19, 2019, Proceedings, Part |
28 (pp. 529-540). Springer International Publishing.
Schmidhuber, J. (2009). Ultimate cognition a la
Godel. Cognitive Computation, 1, 177-193.

Chaitin, G. J. (1982). Gdodel's theorem and
information. International ~ Journal of Theoretical
Physics, 21, 941-954.

Ehrenfeucht, A., Parikh, R., & Rozenberg, G. (1981).
Pumping lemmas for regular sets. SIAM Journal on
Computing, 10(3), 536-541.

Holmes, P. E., & Wilson, R. A. (2003). A new computer
construction of the Monster using 2-local
subgroups. Journal of the London Mathematical
Society, 67(2), 349-364.

Chazelle, B. (1997, October). A faster deterministic
algorithm for minimum spanning trees. In Proceedings
38th Annual Symposium on Foundations of Computer
Science (pp. 22-31). IEEE.

Pettie, S., & Ramachandran, V. (2002). An optimal
minimum spanning tree algorithm. Journal of the ACM
(JACM), 49(1), 16-34.

Cadilhac, M. (2005). Cover Automata for Finite
Languages.

Blum, L., Shub, M., & Smale, S. (1989). On a theory of
computation and complexity over the real numbers: NP-
completeness, recursive functions and universal
machines. Bulletin of the American Mathematical
Society, 21(1), 1-46.

Araki, T., & Kasami, T. (1976). Some decision problems
related to the reachability problem for Petri
nets. Theoretical Computer Science, 3(1), 85-104.

19.

20.

21.

22.

23.

24.

25.

Czerwinski, W., Lasota, S., Lazi¢, R., Leroux, J., &
Mazowiecki, F. (2020). The reachability problem for
Petri nets is not elementary. Journal of the ACM
(JACM), 68(1), 1-28.

Meyer, A. R., & Stockmeyer, L. J. (1972, October). The
equivalence problem for regular expressions with
squaring requires exponential space. In SWAT (Vol. 72,
pp. 125-129).

Jones, N. D. (1997). Computability and complexity: from
a programming perspective. MIT press.

Knuth, D. E., Morris, Jr, J. H., & Pratt, V. R. (1977). Fast
pattern matching in strings. SIAM journal on
computing, 6(2), 323-350.

Zimand, M. (1986). On the topological size of sets of
random strings. Mathematical Logic Quarterly, 32(6),
81-88.

Zimand, M. (2009). Extracting the Kolmogorov
complexity of strings and sequences from sources with
limited independence. arXiv preprint arXiv:0902.2141.
Shor, P. W. (1994, November). Algorithms for quantum
computation: discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations
of computer science (pp. 124-134). leee.

37| Page

