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Abstract: Until now, Computer Scientists have concerned themselves with identifying efficient algorithms for solving the general case of 

some problem – that is finding one which performs well when the size of the input tends to infinity. However, this is the precise opposite of 

what is actually needed in practice. Effectively solving some real-world problem entails identifying an algorithm which works well for all 

(or some) inputs up to some fixed upper bound dictated by the concrete practical application. Such an algorithm may be distinct from the 

one which solves the general case. Furthermore, a general case algorithm may not exist at all or finding it might prove painstakingly hard for 

the human mind.  Fortunately, in practice all that is needed is one which works on the finite cases involved in the real world situations, not 

one which can, unaltered, solve any input correctly. 

In this paper, we first introduce a theoretical framework for reasoning about finite algorithmics. It allows familiar concepts such as 

asymptotic complexity to be adapted to the case where the input size is bounded from above. We also present some elementary results 

within this theory. Secondly, we present a generic approach for automatically discovering an adequate algorithm for the finite case of some 

hard problem – if one exists. Thirdly, we argue why we expect the finite case of hard problems to be easier than the general case. Fourthly, 

we present some relevant ideas specific to three hard problems, namely 3CNF-SAT, String Compression and Integer Factorization. Fifthly, 

we discuss the significance of the theory and methods introduced in this paper – noting among other things that they can be used to 

automatically determine that either (i) P = NP, (ii) P <> NP or (iii) we don’t really care about the distinction for practical purposes. Finally, 

we present four directions for immediate further research and formulate an open question which, when answered will, for all practical 

purposes, decide P=NP. 

Enhancing the way Computer Scientists reason about hard problems is ultimately the single most important contribution we claim for this 

paper. 

Keywords: P equals NP, Finite Algorithmics, Theoretical Computer Science, Complexity Theory. 

1. Introduction 
Until now, we as Computer Scientists have almost exclusively 

concerned ourselves with finding algorithms to solve interesting 

problems in the general case. That is to identify a single algorithm 

– some fixed finite sequence of lines of code – which solves said 

problem for any input. We then reason about upper time and space 

bounds for such an algorithm in terms of asymptotical complexity 

with regard to the input size in bits (or some general unbounded 

parameter which describes the difficulty of the input). Even when 

we are unable to find an algorithm suitable to our desires, we can 

reason about the constraints to which such – if it exists – must 

conform, in terms of lower-bounds. Furthermore, we can go on and 

analyze the relation between the relative hardness of problems – 

even those for which we do not yet have a satisfactory solution - by 

clustering them into complexity classes and then proceeding to 

examine the relationships between these. In 2005 there were about 

417 complexity classes in the Complexity Zoo [1]. As of 2019, the 

number has grown to about 544 classes currently being 

investigated by humanity. However, they all pertain to solving 

some hard problem correctly and efficiently for all inputs, no 

matter how large. 

The approach of solving a problem with which we are concerned in 

practice – of bounded input size - by reducing it to a potentially 

harder problem – of unbounded input size – and using our human 

creativity to find an asymptotically efficient algorithm for the latter 

has proven enormously successful over the past century. From 

pattern-matching, to bipartite (and then general) matching, from 

shortest paths in a graph to maximum flows, humanity has seen 

enormous success in solving practical problems via this approach. 

However, ever since its inception and increasingly pronounced 

during recent decades, the method has started to show its 

limitations. 

A large number of problems, including SAT and all NP-Complete 

ones, integer factorization, solving stochastic games, all PSPACE-

Complete problems and all problems in EXPTIME and above, as 

well as some mysterious ones like breaking AES encryption do not 

have any known efficient algorithm despite decades of research. 

These add to problems which are known not to admit any 

algorithm at all which solves them in the general case: like 

Kolmogorov complexity or solutions to Busy Beaver Game. Some 

of the others are suspected to not to admit such, but wheatear this is 

actually true or not is yet known. 

Nevertheless, a large number of instances of many of such 

problems are actually solvable in practice. Modern SAT Solvers 

[2] can solve problems over up to millions of variables and a large 

number of those over tens of thousands [3][4]. There is no 

presently known method of deriving an instance of a SAT problem 

which is hard to solve by any heuristic (although finding easy cases 

of arbitrary size can be done). In fact, not even a theoretical 

framework exists to reason about such cases, despite numerous 

published empirical studies. The incomputable Busy Beaver 

problem itself has been solved for the two symbol game, up to 4 
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states inclusively [5]. 

There is an apparent discrepancy between how hard a problem 

seems to be in the general case (at least for the human mind) and 

how easy it is for at least some practical cases, which are the ones 

of actual concern to us. As such, it is time to turn our attention to 

studying actual instances of cases of hard problems – in particular 

those which might appear in practice (and are thus almost always 

of bounded input size). Investigating these might sometimes lead to 

efficient algorithms for all real-world needs, or even to the 

discovery of the general case solution. 

Until now, computer science theory has paid little to no attention to 

finite algorithmics. The very foundational tool used to reason about 

algorithms – asymptotic complexity of a function, works by 

definition only for the limit to infinity. Under existing theory, all 

practical instances of a problem – which almost always entail some 

bounded input size – are trivially solvable in O(1). This includes 

computation of non-computable functions, without inclusion of 

proof of actual correctness.  

In this paper we remedy this lacking of the current complexity 

theory by introducing finite algorithmics. We also present some 

noteworthy elementary results formulated under it. 

As far as we know there is no theoretical prior work concerning 

finite algorithmics, as we are just now introducing the field. 

Results exists which can, in retrospect, be regarded as part of field 

of finite algorithmics however. They can be found in the following 

domains: Artificial Intelligence and Machine Learning (there most 

problems solved have bounded input size by formulation), 

Heuristic Solvers for NP-Complete Problems (such as SAT 

Solvers) and to some extent Cryptography (since most cyphers 

have fixed key and block sizes). Nevertheless, even within these 

fields there has been to the best of our knowledge no systematic 

effort to date to introduce a theory which would allow formal 

reasoning about relative performance of various algorithms and 

relationships between various classes of problems with regard to a 

fixed upper bound on input size. 

The study of the P/poly complexity class can be considered 

tangential to this work. We will discuss its relationship with some 

of the other complexity classes we introduce. 

The rest of this paper is organized as follows. 

In Section 3 we introduce the theory related to Finite Algorithmics 

as follows. Section 3.1 contains basic definitions pertaining to 

formulating computer science problems and solutions on the finite 

case. In Section 3.2 we introduce definitions which allow us to 

reason about natural functions restricted to a finite domain using 

concepts analogous to those employed in general case asymptotic 

theory. In Section 3.3 we present seven finite case complexity 

classes and define a few related concepts important to describing 

inherent difficulty within computer science problems. Section 3.4 

formally introduces the problem of solving a computer science 

problem (i.e. producing the source code of an acceptable 

algorithm) and describes its inputs and outputs. Also in Section 3.4 

we introduce a classification of existing general case computer 

science problems based on their known or apparent difficulty. 

In Section 4 we present some elementary but very important results 

related to finite algorithmics, formulated within the theory we 

introduced in Section 3. Section 4.1 deals with relationships 

between finite complexity classes, both in relation to general case 

complexity (Sections 4.1.1 and 4.1.2) and among themselves 

(Section 4.1.3). In Section 4.2 we present a generic method for 

solving any computer science problem on the finite case (Section 

4.2.1) and also introduce some very important elementary results 

pertaining to what performance guarantees can be attained for sure 

for certain types of problems (Section 4.2.2). In Section 4.4 we 

present further ideas which can be employed in the context of finite 

algorithmics to speed-up the quest for a solution to three well-

known hard problems: 3CNF-SAT, String Compression 

(Kolmogorov Complexity) and Integer Factorization (hard only for 

a classical computer). 

We use Section 4.3 to present 10 arguments which we consider 

overwhelmingly convincing to prove the existence of value in the 

study of finite algorithmics. 

In Section 5 we discuss some clear implications of the results 

presented in this paper, including on the way we as computer 

science researchers ought to think about hard problems like P=NP. 

In Section 6 we present four directions for immediate further 

research, and pose a crucial open question, within the realm of 

finite algorithmics. The answer to that open question can be used to 

decide (and for most practical purposes prove) P=NP. Furthermore, 

answering it can be done automatically (if but in a very long time 

frame). The mere existence of such a questions opens up new 

avenues in the quest for proofs in deciding P=NP. 

Section 7 contains some brief Vitae of the author. Section 8 is 

dedicated to Acknowledgments and statement of interest (none). 

Finally, In Annex 1 we include some estimated upper bounds for 

tractability for each finite complexity class, given existing 

hardware. 

2. Materials and methods 

This paper contains results of theoretical reasoning based on the 

author’s current knowledge of advances in complexity theory, 

building of SAT Solvers and algorithms in general. Since it aims to 

introduce a new subfield of computer science, namely finite 

algorithmics, it stops short of providing experimental data as being 

out of the current scope Obtaining such experimental data, based 

on the methods presented here is of interest nevertheless and we, 

the author, encourage fellow scientists to try them out in practice 

and publish the findings Ultimately, the attractiveness of the field 

in general steams partially from the prospect of being able to 

enhance one’s creativity using computers to automate trial-and-

error. They can perform tasks such as eliminating obviously 

unpromising alternatives several orders of magnitude faster than a 

human. 

3. Theory 

We now proceed to introduce the required theory which enables 

formal reasoning about finite cases of general computer science 

problems. 

Section 3.1 Introducing Finite Algorithmics 

Definition 1 (Problem of restricted size) 

Consider some problem Prob consisting of finding a proper 

algorithm S which, for any given an input s of length |s| from the 

universe possible inputs U <inclus in> {0,1}* produces some 

output S(s) which is among the set of valid outputs for input s for 

problem Prob. 

We define Prob[n0] as the problem of finding such an algorithm 
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which produces desired output only when |s| <= k. Such an 

algorithm can have undefined behavior elsewhere.  

Example: SUBSUM[1000] is the problem of finding an algorithm 

which computes correctly wheatear a particular sum is attainable 

by summing some or all of at most n0=1000 given integers. 

Discussion: Note that the algorithm which is the answer to 

Prob[n0] can be different for different n0-s. SUBSUM[1000] might 

have a different algorithm than SUBSUM[1000000]. Also, solving 

the original problem Prob entails providing an algorithm which 

solves it for any input, regardless of the size – the same for all 

sizes. Thus, Prob[n0] can be regarded as a 1-parameter function [to 

include from N->{a,b,c,..}*], which, given some n0 outputs a 

string representing the desired algorithm in some chosen 

programming language. Prob itself can be regarded as a parameter-

less function (or a constant) providing such. 

Definition 2 (Problem of Exact Size) 

We define Prob(n0) analogously to Prob[n0] to represent the 

problem of finding a proper algorithm when the input size is 

precisely n0. 

We extend the notations of Definitions 1 and 2 to parameterized 

complexity accordingly. Namely, when we reason about the 

complexity of some algorithm not in terms of its input size, but in 

terms of some parameter n (for example number of variables in a 

3CNF-SAT problem instance) – which only bounds the input size 

but is not exactly equal to it, the same notations apply replacing the 

length |s| of the input with the definition of this parameter. 

The definition of what constitutes a proper algorithm for a given 

problem merits attention. For a particular family of computer 

science problems (e.g. boolean formula satisfiability) a myriad of 

constraints can be placed on either inputs (e.g. no more than 3 

clauses per variable), outputs (e.g. should provide also a satisfiable 

assignment if one exists), algorithm itself (should be no longer than 

10 Mbytes) or its runtime behavior (e.g. space and time 

complexity), in addition to the type of machine which will be 

running it (e.g. a probabilistic computer, quantum computer) in 

order to arrive at a particularization which is specific enough to 

allow us to reason about it formally. Some constraints are more 

interesting than others though. 

Definition 3 (Full Problem Statement) 

In order to specify the statement of a computer science problem 

fully, we require the following to be included: 

 Theoretical problem statement. This is a formal 

description which specifies which particular outputs can 

be considered correct for a certain input. Example: For 

discrete logarithm we can consider an output correct if it 

represents the actual discrete logarithm of the input. 

 Type of machine used to solve it. This can be Turing-

equivalent, Probabilistic Turing-equivalent or Quantum 

Turing-equivalent. If humanity discovers other types of 

machines, this list can be expanded accordingly, without 

losing validity of most results within this paper. 

 Restriction on input size. This can be specified directly, 

or via some parameter which constraints it. For the non-

finite case, this limit is taken to be +INF. We require that 

this limit either be +INF or a natural number explicitly 

given (not merely constrained). 

 Restriction on output size. This involves setting some 

constrains on the function which correlates the output of 

the algorithm to size of the corresponding input. 

Example: We require output be of polynomial size in the 

input size. 

 Restrictions on input universe. In addition to size 

restrictions, we can require that the input satisfies some 

additional constraints, limiting generality (e.g. there are 

only 3 clauses per variable for a 3CNF-SAT instance, or 

that it represents a satisfiable formula). These can be 

included in 1. or not. 

 Accuracy requirements. These specify how often and in 

what way is the algorithm allowed to stray from the strict 

correlation relationship between inputs and outputs 

defined in 1.. For a decision problem, these can be 

acceptable rates of false-positives and false-negatives 

over all valid input pairs. They can be specified in 

absolute terms (i.e. a natural number), or as a bound on 

the fraction of such to some other quantity – for example 

constraining Sensitivity and Specificity. For non-decision 

problems, constrains on absolute or relative error can be 

included here. Finally, sometimes different requirements 

for different subsets of the input universe can be 

formulated (e.g. in case a 3CNF-SAT formula has less 

than 2 clauses per variable, we require 100% Sensitivity 

and Specificity, but if it has more than we can settle for 

99%). 

 Proof Requirements. This specifies if the algorithm 

must provide some sort of additional output which can be 

used to construct a proof that it is indeed correct for the 

respective input. For a 3CNF-SAT formula this can be a 

satisfiable assignment, or a certificate of non-

satisfiability (do note for this particular example that not 

all non-satisfiable 3CNF-SAT formulas may have non-

satisfiability certificates of polynomial size). We call any 

such part of the output a certificate (of correctness). 

Accuracy requirements can be placed on this part of the 

output as well. 

 Completeness Requirements. This specifies what kind 

of behavior the algorithm is guaranteed to have over the 

input universe. In particular, we say that it is complete if 

it terminates with the required guarantees for all inputs 

and incomplete if it does not do so for some of them (for 

which it may produce invalid outputs or simply never 

terminate). 

 Restrictions on size of algorithm. For some fixed 

programming language considered, we require that the 

size of the algorithm produced to solve the problem be 

bounded from above by some function of the input size. 

For a general case algorithm, this size must be a constant 

(however it may be rather large). For a problem of 

restricted size, it can vary with the input size restriction. 

Nevertheless, for a particular input size it must have a 

definite upper bound. 

We have deliberately excluded running time and space complexity 

of the algorithm from the problem definition. This is because for a 

given problem we will reason about its difficulty in terms of the 

running-time required to solve it. As with classical complexity 

theory this can be taken for the Worst-Case, Average Case, Best 

Case or anything in-between (including “average case in practice”). 

The memory model we employ is generally the RAM model. We 

typically do not include any mention of space-complexity, since by 

employing a Perfect Hashing scheme on the accessed memory 

addresses, space can be bounded from above by the time 
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consumed, with only a small factor increase in the latter. We also 

generally but not always constrain the output to be of polynomial 

size in the input. We take space bounds to mean additional space 

besides that used by code of the program itself (which can be 

modified at runtime if needed!). Similarly we can exclude the time 

required to load the body of the program into memory (even if it 

may be extremely large – for example exponential in input size). 

Other machine-specific runtime requirements (such as number of 

random bits used or number of qubits employed) can be applied 

accordingly as in the general case. 

Proof requirements are specifically important when we are 

reasoning about algorithms we either do not know in advance, or 

about which we do not have sufficient insight to prove that they 

produce correct outputs for all inputs. For example, for 

determining the k-th bit of Chaitin’s constant [6], for k between 

10^9 and 10^9 + 10, an algorithm which simply outputs “1” for all 

inputs, might in fact be correct for all we know. However, without 

some insight into why it is correct, this may not be satisfactory 

enough. 

Note that a proof need not always be a requirement. Many image 

recognition and other algorithms constructed via Machine Learning 

provide no proof of the correctness of their outputs. In fact, for 

such algorithms, we currently more or less have little-to-no idea 

both why they work so well in practice, and when they work this 

well (this latter failing has been shown to allow attacks for 

example against a road-sign recognition algorithm, which produce 

an image which to a human looks like a clear “STOP” sign, but to 

the algorithm it is seems a clear “Minimum speed 120 Km/h” 

sign). This has nevertheless not curtailed their adoption in practice. 

Also note that the proof part of the output may be only what is 

required to complete or generate some larger proof (of potentially 

much larger size, e.g. exponentially larger) in some format which 

can convince either a human or, respectively, an automated proof 

verifier for the problem domain that the output is indeed correct. 

For a 3CNF-SAT instance for example, a proof of unsatisfiability 

could be just a small subset of the input variables – small enough 

to allow exhaustive trial of all possible assignments – which, when 

the input expression is reduced accordingly it generates empty 

(impossible) clauses. 

The restrictions on the size of the algorithm itself are a novelty 

specific to finite algorithmics. For the general case, the implicit 

assumption made by humans in their quest for a solution is that 

there is a single algorithm (of some fixed size) which solves all 

inputs properly. The interestingness of our theory and of this paper 

in general rests on the assumption that some problems admit 

different algorithms (of potentially different sizes) for different 

input sizes – and that some may not even admit an algorithm for 

the general case. 

In some cases it can be useful to “break” an algorithm (its source 

code) into a fixed part, which is the same for all inputs in the 

problem space (similarly to a fixed algorithm for the general case) 

and a variable part – the “hint” – which may vary with input size. 

Definition 4 (Algorithms with Hints) 

We define the solution to some problem Prob (of either general or 

restricted size), to consist of a fixed proper algorithm S(instance, 

hint) which takes as input both the instance of the problem and 

some hint data to produce its output, alongside a function GEN(n) 

which generates the hint for a particular input size n. The output 

for a particular problem instance, is thus S(instance, 

GEN(|instance|)). 

We call S a hinted algorithm. 

Discussion: The advantage of having the GEN(n) function split 

from the rest of the algorithm’s body is that it could be 

precomputed (note that it takes as parameter the size of the input, 

not the input itself). Do note that by taking S to include a source-

code interpreter (a machine simulator) and GEN(n) to include 

some source code, we can describe any algorithm in this fashion. 

For general case problems, if we constrain GEN(n) to be 

polynomial in size to n, and S to run in polynomial time, the 

algorithms examined will all be contained within the complexity 

class P/poly. Do note that problems which do not admit P/poly 

algorithms in the general case (e.g. the hint would grow to super-

polynomial size beyond a certain threshold) might very well be 

solvable efficiently for all sizes. 

involved in practice – up to potentially very large ones. Also, 

P/poly solutions for the general case may be of no practical use for 

some problems. Determining the hint may take exponential time, 

may be no less hard than the original problem itself or the P/poly 

solution may imply no constructive method at all to generate the 

hint or even determine if a particular hint is adequate. Alternative 

algorithms requiring much shorter hints in practice might exist, but 

they might not behave well for arbitrary large inputs thus not 

making general case problem P/poly. Finite algorithmics can 

therefore be considered a field tangentially related to, but fully 

distinct from study of any general case complexity class, including 

P/poly. 

Section 3.2 Finite complexity and its classes 

In order to be able to reason easily about relative running times of 

various algorithms, on the finite case – where regular complexity 

theory will simply give O(1) – we would like to introduce some 

additional theory. 

The easiest extension of definition of asymptotic approximation of 

some natural function (from N to N) is to simply introduce an 

upper bound on the constant hidden by the O, o, or Omega 

notations. 

In the following we take a natural function to mean any 

monotonically non-decreasing function from natural numbers to 

natural numbers. Thus we include any function which might 

represent some running time or space complexity of some 

algorithms for any input up to a certain size (difficulty). 

Definition 5 (Finite complexity with bounded constant 

and restricted domain) 

For two natural functions f and g, some constant natural number c, 

and two other natural numbers n1 and n0, with n1<=n0, we say that 

f(n)=On1..n0[c](g(n)) iff f(n)<=c*g(n) for all n between n1 and n0 

inclusively. 

We extend the definition accordingly allow for n0 to be +INF.  

Also, if n1 is the minimum possible value in the input universe, we 

can omit it and specify only n2. 

The above definition allows us to describe relative performance of 

algorithms in some familiar way. For example, for the All-Pairs-

Shortest-Path problem, we can say that the complexity of the 

Floyd-Warshall algorithm [7] is T(n)=O+INF[100](n^3). This 

essentially means that all of the operations performed by this very 
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short non-recursive algorithm (incrementing loop variables, 

dereferencing, comparisons and assignments) are no more than 100 

*n^3. This is definitely the case for any n (there are probably less 

than 20 such operations per n^3). 

The shortcomings of the above notation steam from the fact that 

for finite cases, we have that f(n)=On1..n0 [c](g(n)) for any two non-

zero functions f(n) and g(n), for some appropriate constant c. Thus, 

we need to introduce yet more theory for this approach to become 

useful. 

The natural approach is to choose the constant as small as possible 

(introduce a tight bound). 

Definition 6 (Finite complexity with minimal constant 

and restricted domain) 

For two natural functions f and g, and two natural numbers n1 and 

n0, with n1<=n0, we say that Const(f,g)n1..n0 = c0 iff (i) 

f(n)=n1..n0O[c](g(n)) and (ii) f(n)!=n1..n2O[c-1](g(n)). 

As before, we allow n0 to be +INF and n1 to be omitted where 

appropriate 

We are now able to reason about an algorithm S in terms of “if it 

were to have complexity g(n), how large would the constant need 

to be?”. 

Definition 7 (Apparent relative finite complexity) 

For three natural functions f, g, and h, and two natural numbers n1 

and n0, with n1<=n0, we say that f(n) = On1..n0
h(n)(g(n)) iff 

Const(f,g)n1..n0 <= h(n0)*Const(f,g)n1..(n1+n0)/2.  

We say formally that for the interval n1..n0, the function f appears 

to have complexity g, within a factor of h. 

When the function h is constant, we can write the constant directly. 

Discussion: We have essentially constrained that the constant 

grows from the mid-point of the interval, to the endpoint of the 

interval with by a factor of at most h(n0). 

For a general case algorithm of some complexity g(n), we have that 

there exists some n0, for which its apparent finite case complexity 

is also g(n) within a factor of h(n)=1. This follows directly from 

the fact in the general case, beyond a certain threshold, the constant 

remains fixed regardless of n. 

Definition 8 (Certain finite complexity) 

For two natural functions f, and g and two other natural numbers 

n1 and n0, with n1<=n0, we say that f(n) = OCn1..n0 (g(n)) iff f(n) = 

On1..n0
1+1/n^2(g(n)). 

Discussion: We have chosen h(n)=1+1/n^2, such that Product(h(n)) 

when n tends to infinity is bounded (it is in fact ~3.68 - 

Wolframalfa was used to compute the limit). This allows us to 

reason that if f(n) = OCn0 (g(n)) => f(n) = OC2*n0 (g(n)) for all n0 

beyond a certain threshold, then f(n) = O(g(n)). Any h(n) with 

bounded Product(h(n)) when n tends to infinity can be used to 

replace our choice. 

Definition 9 (Polynomial rank of a finite complexity) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that PolyRankn1..n0(f) = k, iff (i) f(n) = 

On1..n0
2(n^[k-1]) and (ii) f(n) != On1..n0

2(n^[k-2]). 

Discussion: We have chosen h(n)=2, such that Product(h(n)) after 

log(n) doublings of n0 is bounded from above by n (it is precisely 

n actually). This allows us to reason that if Polyn0(f(n)) = k => 

Poly2*n0(f(n)) = k for all n0 beyond a certain threshold, then f(n) = 

O(n^k).  

Definition 10 (Polylogarithmic rank of a finite 

complexity) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that LogRankn1..n0(f) = k, iff (i) f(n) = 

OCn1..n0(log(n)^k) and (ii) f(n) != OCn1..n0(log(n)^[k-1]). 

We consider only k>=1. If no such k exists, we say that 

LogRankn1..n0(f) = 0. 

Definition 11 (Linear finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f) Apartine= Linearn1..n0, iff 

f(n) = OCn1..n0(n). 

Discussion: We have defined the linear complexity class such that 

it allows a very small growth factor for the constant, as n grows to 

infinity. So small actually these factors multiplied together are less 

than ~3.68. 

Definition 12 (Polylogarithmic finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= PolyLogn1..n0, 

iff LogRankn1..n0(f) < log(n)/log(log(n)). 

Discussion: The value log(n)/log(log(n)) was chosen such that the 

resulting effective growth rate is linear or below 

Definition 13 (Polynomial finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= Polyn1..n0, iff 

PolyRankn1..n0(f) < 1+log(log(n)) and f NotApartine!= 

PolyLogn1..n0. 

Discussion: The value log(log(n)) was chosen such that any 

problem within this complexity class would most likely be 

tractable for almost all inputs which show up in practice. For 

example, if we take f(n) to represent the complexity of some 

algorithm based on its input size, for an input of size 2^64 (~16 

Million Petabytes), the exponent in PolyRank(f) would be just 7. 

Also for an input of mere 1024 size, the maximum exponent can 

still be 5. This is very appropriate since some interesting problems, 

like for example Assignment Problem, have general case 

complexity around these thresholds. If the practical cases for the 

problem at hand involve n << 1024, the constant 1 in 1+log(log(n)) 

could be increased to something more suitable, like 2 or 5. 

Essentially, if a problem belongs to the polynomial finite 

complexity class, we can expect that almost surely the associated 

algorithm will perform fast enough in practice, to make the 

problem tractable. Thus, the semantic meaning from the general-

case Poly class is maintained. 

Definition 14 (Semi-Polynomial finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= SemiPolyn1..n0, 

iff PolyRankn1..n0(f) < 1+log(n) and f NotApartine!= Polyn1..n0. 

Discussion: The value log(n) was chosen such that any problem 

within this complexity class would most likely be tractable for a 

significant number of inputs which show up in practice. For 

example, if we take f(n) to represent the complexity of some 

algorithm based on its input size, for an input of size 1024, the 

exponent in PolyRank(f) would be 11, placing the problem at the 
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threshold of tractability versus intractability given existing super-

computers. Again, if in practice we except that n << 1024, the 

constant 1 in the 1+log(n) above can be adjusted to something 

more suitable.  

Definition 15 (Exponential rank of a finite complexity) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that ExpRankn1..n0(f) = 1/k, iff (i) f(n) = 

OCn1..n0(2^[n/k]) and (ii) f(n) != OCn1..n0(2^[n/(k+1)]). 

Discussion: We are thus describing for a certain n, how large the 

exponent of 2 needs to be, in order to tightly provide an upper 

bound for the function. We describe it as a fraction of n itself. 

Definition 16 (Exponential finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= Expn1..n0, iff 

ExpRankn1..n0(f) <= 8 and furthermore PolyRank(f) > 1+log(n). 

Discussion: We are taking the exponential finite complexity class 

to represent everything which is at most about simply exponential 

in n, which does not belong to any of the previous classes. This is a 

break from the general case EXPTIME complexity class, where the 

exponent is allowed to be polynomial in n, not just linear. We have 

chosen the value 8 instead of 1, to allow functions of the order of 

n! to fit into this class, up to n ~ 512 - which should be more than 

enough for anything beyond it to be considered intractable in 

practice. 

Definition 17 (Intractable finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= Intrn1..n0, iff 

ExpRankn1..n0(f) > 8 and furthermore PolyRank(f) > 1+log(n). 

Discussion: We are basically naming everything above exponential 

finite complexity class to be Intractable. In practice, for some small 

n<110 (for example n<20), problems in this class may still be 

solvable. Nevertheless, if n is small enough, then the output for all 

possible inputs can be precomputed and given as a hint to an 

algorithm under Definition 4. It thus makes sense to expect that in 

practice anything super-exponential can either be precomputed or 

be considered intractable. 

Definition 18 (Constant finite complexity class) 

For a natural function f and two natural numbers n1 and n0, with 

n1<=n0, we say that Complexityn1..n0(f)  Apartine= Constn1..n0, iff 

(i) f = OCn1..n0(c0), for some fixed constant c0 and (ii) 

LogRank(f)<=1. 

We also say in this context that c0 is the constant rank, or 

ConstRankn1..n0(f) = c0. 

Discussion: Constant finite complexity is quite similar to general 

case constant complexity. Do note however that the constant rank 

obtained in practice, might in fact be hiding some small growing 

non-constant function for the general case. Furthermore, when 

reasoning about complexity with regard to different upper bounds 

n0, the constant c0 must remain fixed – independent of n0. 

Section 3.3 Finite complexity hierarchy 

Given the definitions in Section 3.2, for any given natural interval 

n1..n0, with n1<=n0, we can classify all the natural functions f, 

into precisely one of the following classes. 

1. Constn1..n0 

2. PolyLogn1..n0 

3. Linearn1..n0 

4. Polyn1..n0 

5. SemiPolyn1..n0 

6. Expn1..n0 

7. Intrn1..n0 

The higher the level a function occupies in this hierarchy, the less 

tractable we expect a problem admitting an algorithm of this 

complexity to be. 

We are now armed with the possibility to describe the variation in 

the classification of a particular natural function f, as we allow the 

input domain to expand. 

Definition 19 (Threshold of complexity class explosion) 

For a natural function f, a complexity hierarchy level l and a 

natural number n1, we say that Exploden1(f,l) = Min {z | f belongs 

to some complexity class of level at most l for any n1..n0, with 

n0<z, but does not for n1..z}. If the set is empty, we take the 

marker value +INF. 

We can represent the hierarchy level by either its index above or 

the corresponding name (PolyLog,Linear,etc.). 

Discussion: We are taking the explosion threshold for a function f, 

to be the minimum n0 beyond some small n1 value, where the 

function f will belong to a complexity class strictly above the 

respective level. 

For practical considerations we can limit the smallest value in the 

input domain of f to some n1, large enough to be non-trivial. This 

value n1 can be fixed apriori (for example n=16 seems a promising 

candidate) or fixed in relation to a particular problem domain. For 

example, for parameterized complexity 3-CNF-SAT in n – the 

number of variables, anything below n=10 can be considered 

trivial. The bottom line in choosing n1 > 1 is to exclude some 

anomalous behavior of a function around the very start of its 

domain. 

Do note that the function f might have different Exploden1(f,l) 

values, for different n1s. In fact, for some level l, there could be 

some n1 beyond which the explosion threshold is +INF.  

Definition 20 (Threshold of complexity class collapse) 

For a natural function f, a complexity hierarchy level l and a 

natural number n1, we say that Collapsen1(f,l) = Min {z | f belongs 

to some complexity class of level at most l for any 1..n0, with 

n0>=z and n0 <= n1}. If the set is empty, we take the marker value 

+INF. 

We can also take n1 to be +INF. 

Discussion: We are taking the collapse threshold for a function f, to 

be the minimum n0 beyond which f belongs to a certain 

complexity class or better, at least for up to another higher limit n1 

(which may be +INF). 

Section 3.4 Finite Algorithmics and Problems 

When attempting to solve a computer science problem, we shall 

consider the following as input: 

1. The Full Problem Statement according to 

Definition 3. 

2. The interval n1..n0 of input size (or other 

difficulty constraining parameter) where 

practical instances of the problem lie. 

3. The worst acceptable finite complexity class 
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for running time required by desired algorithm. 

We can reason in terms of worst-case/best-

case/average-case either for the entire domain 

or simply for the instances which occur in 

practice. We can describe this by requiring that 

the running time belongs to a class up to a 

certain level of the finite complexity hierarchy 

described in Section 3.3. In practice this is 

results directly from point 2 above, the 

reasonable timeframe in which a solution to 

such a problem is useful and the speed of 

existing hardware. If the produced algorithm 

allows high degree of parallelism, then the 

intended cluster size can also be factored in. 

See Appendix 1 for approximations 

considering current state of the art hardware. 

4. The amount of time which can be allotted to 

actually discovering the solution. When 

reasoning about a potentially variable upper 

input bound n0, this can also be expressed in 

terms of finite complexity class, with regard to 

the difficulty parameter n0. 

5. Some collection of source-code for known 

algorithms and data structures. 

The desired output for will consist of one of the following: 

1. A Hinted Algorithm as per Definition 4, S and some fixed hint 

hintn0. 

2. A Hinted Algorithm S and another algorithm GEN which can 

generate hintn for any n in n1..n0. We call the GEN algorithm, the 

Hint Genesis Algorithm. 

3. A Hinted Algorithm An0 which generates the pair of algorithms 

from point 2 above, alongside its fixed hint - hintAn0. We call such 

an algorithm the Generator Algorithm. 

When reasoning about the relative efficiency of finite case 

algorithms, we shall consider them both in terms of running time 

complexity and complexity of hint size, with relation to input size 

(difficulty). Thus, we can say that an algorithm is T(n)/G(n) 

efficient, where T(n) is running time and G(n) is hint size. The 

hint, as well as the program code, is assumed to be already loaded 

in memory. For example we can reason about a certain algorithm / 

problem saying it has finite case complexity Poly/PolyLog on the 

domain of interest. 

The most straightforward formulation of the above is the 

following: “Given what we already know, find an efficient enough, 

potentially hinted, algorithm which solves the full problem 

statement on any input of size (difficulty) within the interval 

n1..n0, or show how one can be constructed.” 

It is simple to note that an output of type 2 above can be 

precomputed from one of type 3, by running the algorithm A. 

Furthermore an output of type 1 can be precomputed from one of 

type 2. It is useful however to reason about these options 

separately, since the precomputation step between the types may 

not always be polynomial. 

Two more inputs might be useful for some problems for which 

there are known algorithms to solve them for some particular kinds 

of inputs (e.g. of small input size). These are: 

* The verifiability thresholds given existing algorithms. 

Namely: 

o v1: The answer for ALL instances of this input size 

(difficulty parameter) or below can be precomputed in 

feasible time. 

o v2: The answer to ANY instance of this input size 

(difficulty) or below can be determined within feasible 

time. 

o v3: The answer to MANY instances of this input size 

(difficulty) or below can be determined within feasible 

time. 

o v4: The answer to SOME instances of this input size 

(difficulty) can be determined within feasible time. For 

instances beyond this input size, it is considered highly 

unlikely for then-existing state of the art to be able to 

solve any of them. 

* Golden Data. For instances of input size (difficulty) between 

v1..v4, some already existing correct input/output golden data 

might be offered. This can include: 

o Tests with precise output. 

o Tests with lower and/or upper bounds on the correct 

output. 

Golden data might be useful to save running-time during testing, 

by avoiding the need to run the original algorithm which generated 

it (which might have consumed a lot of time or resources initially). 

 Efficiently solvable via a known algorithm (ES). 

Problems include string pattern-matching, shortest paths 

and many, many others. In fact most of the problems 

humanity has tackled are now included in this category. 

The state of the art algorithms known to the scientific 

community are sufficiently efficient to solve all practical 

instances of such problems. 

 Tractable but insufficiently so (TR). For some 

problems, like Assignment Problem, Multidimensional 

Range Queries we know sufficiently efficient algorithms 

to solve any instance of them relatively quickly, but for 

some practical applications we need even faster ones. We 

may not even know if such algorithms exist, as the gap 

between the lower-bounds and the upper-bounds, 

complexity wise can be quite large still. 

 Intractable for large input sizes, but tractable for 

small ones (PTR).  For problems such as Prime 

Factorization, Discrete Logarithm, NP Complete 

problems like Boolean Formula Satisfiability, Knapsack 

problem and others, an algorithm for solving them 

precisely is known, but the best one is still very 

inefficient (largely in terms of running time), thus 

making it suitable only for small input sizes. Some 

problems in this category (especially some NP-Complete 

ones), might fall in the TR category for some practical 

applications, when a sufficiently accurate approximation 

algorithm is known, when the practical input sizes are 

small, or when the practical instances have some other 

trait (known or unknown) making them easier than the 

general case (like having a small target sum for the 

knapsack problem, or having a small number of clauses 

per variable for 3-CNF-SAT). 

 Intractable because of assumed hardness (ITRA). For 

problems in this category, no algorithm is known which 

solves any instance but those of trivial size and it is 

strongly suspected that none exists, because they belong 



21 | P a g e  
 

to a certain complexity class. Problems such as 

Quantified Boolean Satisfiability which belong to the 

complexity class PSPACE-Complete are believed not to 

be solvable in polynomial time, and be harder still than 

even NP-Complete problems. However it is not known if 

this is so or not. Furthermore, #P-Complete problems 

like #SAT are also believed to be hard. But this is yet 

again still unknown. 

 Intractable and mysterious (ITRM). There are 

problems - like determining the encryption key used to 

encrypt a known plain text using AES given the cypher 

output - which are not known to belong to a specific 

presumably hard complexity class. Nevertheless, they are 

generally regarded to be intractable by mere fact that a 

large number of researchers have spent time thinking 

about them and yet no efficient algorithm has been 

determined. 

 Truly Intractable (IT). Some problems, like Halting 

Problem, Busy Beaver, Kolmogorov Complexity (very 

useful in compression and encryption), word problem for 

semi-Thue systems, determining the bits of Chaitin’s 

constant to non-trivial precision and many others have 

been proven to be intractable in the general case. That is, 

no algorithm exists which solves them. This nevertheless 

does not necessarily make them intractable for bounded-

size input. Two-symbol Busy Beaver game for example 

has been solved precisely for up to 4 states [5].. 

Finite Algorithms aims to provide efficient algorithms for 

problems in TR, PTR, ITRA, ITRM and IT classes but only for the 

finite cases which occur in practice, without necessarily solving or 

giving a definite negative answer with regard to a solution for the 

general case. Furthermore, known algorithms for general-case 

problems (in any tractability category) can be used in the 

automated or semi-automated quest for efficient ones for the finite 

case. 

Definition 20a (Complexity of Solving a Problem) 

Given a particular finite case computer science problem Prob, 

specified by the inputs 1,3-7 in this section (excluding the actual 

finite limits), we refer to complexity of solving this problem, as the 

complexity of some algorithm A(n) which given a natural number 

n, generates the source code of some hinted algorithm, along with 

its hint (output of type 1) for any n <= n0 (input 2). 

In case we are interested in solving the problem for any upper input 

size (difficulty) bound, we can take the input 2 bound n0 to be 

+INF and allow A to take this special value for its single 

parameter. 

We reason about the complexity of solving a problem in terms of 

complexity of the corresponding algorithm A. 

For some problem Prob (potentially finite case) we denote 

Complexity(Prob, n0) the complexity of the most efficient 

algorithm which solves the problem for any n up to n0. 

Discussion: The complexity of solving a problem can be thought of 

essentially as the running time of some algorithm which runs on 

some machine (e.g. a regular computer) which produces the source 

code required to solve any instance of such problem, up to some 

upper input (difficulty) bound which itself is below some n0. Note 

that solving a computer science problem is in itself a computer 

science problem, to which we can apply the entire theoretical 

framework presented. 

4. Results 

We now proceed to present some elementary results of high 

importance derived within the theoretical framework introduced in 

Section 3. 

Section 4.1 Relationships between complexity classes, finite and 

general 

In this subsection we present basic relationships between finite 

case and general case complexity classes for natural functions. 

Section 4.1.1 From finite case complexity to general case 

Theorem 21 (When finite case complexity implies general case 

complexity) 

1. If f(n) = OCn0 (g(n)) for some n0, and also for any 

n’>=n0, we have that f(n) = OCn’ (g(n))  => f(n) = 

OC2*n’(g(n)), then f(n) = O(g(n)). 

2. If PolyRankn0(f) = k, for some fixed natural numbers n0 

and k, and also for any n’>=n0 we have that 

PolyRankn’(f) = k => PolyRank2*n’(f) = k, then  

f(n)=O(n^k).  

If such n0 and k exist, we can say that f belongs to the 

general case polynomial complexity class. 

3. If LogRankn0(f) = k, for some fixed natural number n0 

and k, and also for any n’>=n0 we have that 

LogRankn’(f) = k => PolyRank2*n’(f) = k, then  

f(n)=O(log(n)^k). 

4. If f Apartine=PolyLogn0 for some n0 and also for any 

n’>=n0 we have that f Apartine=PolyLogn’ => f 

Apartine= PolyLog2*n’, then f(n)=O(n). 

If such n0 exists, we can say that f is grows at most 

Linearly. Depending on its exact PolyRank, it may in 

fact grow just polylogarithmically. 

5. If f Apartine=Linearn0 for some n0 and and also for any 

n’>=n0 we have that f Apartine=Linearn’ => f 

Apartine=Linear2*n’, then  f(n)=O(n).  

Like above, if such n0 exists, we can say that f is grows 

at most Linearly. 

6. If f Apartine=Polyn0 for some n0 and and also for any 

n’>=n0 we have that f Apartine=Polyn’ => f 

Apartine=Poly2*n’(f), then  f(n)=O(n^log(log(n))). 

If such n0 exists, we can say that f = O(n^log(log(n))). 

Note that this is strictly speaking superpolynomial, but 

barely so. Also, note that it is sub-exponential. 

7. If f Apartine=SemiPolyn0 for some n0 and and also for 

any n’>=n0 we have that f Apartine=SemiPolyn’ => f 

Apartine=SemiPoly2*n’, then  f(n)=O(n^log(n)). 

If such n0 exists, we can say that f = O(n^log(n)). Note 

that this is strictly speaking superpolynomial, however 

also sub-exponential. 

8. If f Apartine=Expn0 for some n0 and also for any 

n’>=n0 we have that f Apartine=Expn’ => f 

Apartine=Exp2*n’, then f(n)=O(2^n). 

If such n0 exists, we can say that f = O(2^n), which is 

part of the EXP complexity class. 

9. If f Apartine=Constn0 for some n0 and and also for any 

n’>=n0 we have that f Apartine=Constn’ => f 

Apartine=Const2*n’, then f(n)=O(1). 

If such n0 exists, we can say that f is of constant growth 

rate. 

10. If there exists an infinite number of natural numbers n0, 

such that Exploden0(f, Exp)<+INF => then  
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f(n)=Omega(2^n).  

This means f belongs to EXP or worse. 

Proof: Proving statements 1-9 involves straight forward induction 

and computation of the limit to infinity of the Product of the 

allowed constant growth rates under each corresponding definition. 

While their significance is crucial, the proof is trivial enough to be 

omitted from this paper. Proof of statement 10 is by contradiction, 

showing that there can exist no fixed constant hidden by an o(2^n) 

notation. Again, it is considered a simple exercise and is excluded 

from this paper. 

Corollary: Statements 1-9, remain true if for some complexity 

level l, the hypothesis is replaced by Explode+INF(f,l) = +INF. Also 

they remain true, if the induction hypothesis of the second part is 

extended to refer not only to n’, but to all n0 <= n’’ <= n’.  

Discussion: The corollary above gives a direct criterion for 

converting between finite and general case complexity classes, 

when possible. 

Theorem 22 (When finite case complexity excludes 

general case complexity) 

For any natural function f and any finite complexity level l, if there 

exists an infinite number of n0 such that Exploden0(f,l) <+INF then 

f belongs to a complexity class worse than the corresponding 

general case complexity given for that level by Theorem 21. 

Proof: Like for statement 10 for Theorem 21, the proof is by 

contraction, showing that no fixed constant can exists hidden by 

the O notation for the corresponding general case complexity class.  

We consider it rather trivial and omit it form this paper. 

Discussion: The theorem gives a direct criterion for excluding a 

general case complexity for a function f, about which we know 

how it behaves in practice and we are also able to reason that there 

will be infinitely many lager values on which it continues to 

behave as such in terms of growth rate. Do note we require that an 

infinite number of n0 exist. It may be that the function f has 

smaller finite complexity for any small enough finite interval. 

However if there are an infinite number of suitable n0, once the 

bounds of that interval are allowed to grow sufficiently large, the 

complexity always explodes. 

Theorem 23 (Precise determination of general case 

complexity) 

For any natural function f and any finite complexity level l, f 

belongs to the corresponding general case complexity class under 

Theorem 21, iff there exists an n0, such that Collapsen0..+INF(f,l) = 

k, for some fixed natural number k>=n0 and Explodek..+INF(f,l+1) = 

+INF.  

Proof: The proof consists of direct application of the definitions of 

Collapse and Explode to reduce to a proper application of Theorem 

21. We consider it trivial enough to be omitted from this paper. 

Note that we may not always know enough about a function to be 

able to apply either of the above theorems. Also, do note that even 

if a function belongs to a favorable general case complexity class, 

it does not mean it is solvable in practice, as its threshold 

Collapsen0(f,l) may be beyond the largest instances of practical 

applications. 

Analogously, even if a function belongs to a certain unfavorable 

general case complexity class or worse, it may still be very 

solvable for all cases of practical importance. Its threshold 

Explode+INF(f,l) may be larger than some n0 which is the maximum 

size of practical instances and also Collapsen0(f,r) for some r<l may 

be small enough to make the problem practically tractable. 

Section 4.1.2 From general case complexity to finite case 

Theorem 24 (General case complexity generally implies finite 

case after some threshold) 

For any natural function f which has general complexity O(g(n)) 

and Omega(h(n)), the following statements are true: 

1. There exists some n0, such that for all n>n0, 

f(n) = OCn(g(n)).  

2. For any complexity class level l with growth 

rate no smaller than g(n), then Collapse+INF(f,l) 

< +INF and also there exists some n0, such that 

Exploden0(f,l) = +INF. 

If h(n) grows faster than the functions in complexity class l, then 

Collapse+INF(f,l) = +INF and also there exists some positive n0, 

such that Exploden0(f,l) < +INF. 

By growth rate of functions in a finite complexity class l, we refer 

to the asymptotic growth rate of the formula representative of such 

class, given by Definitions in Section 3.2. 

Proof: The proof is by contradiction, following the direct 

application of the definitions of general asymptotic growth 

notations. We consider the proof trivial enough to be omitted. 

Discussion: The theorem implies that having determined some 

bounds for the general case complexity allows us to say that after 

some threshold, those bounds will characterize the finite case as 

well. 

Section 4.1.3 Relationships between finite case 

complexity classes 

Relationships between finite complexity classes of different 

problems are trickier to characterize than in the general case. This 

is because in case of reduction from one problem to a number of 

applications of some others, it actually matters precisely how many 

applications there are of each of those other problems and also 

what the input size (difficulty) bounds for those are. As such, for 

example a polynomial number of applications of a solution of 

complexity class Polyn0 might very well result in the PolyRank of 

the main algorithm to exceed the log(log(n0)) upper-threshold for 

the Polyn0 class. Nevertheless, for a particular candidate algorithm 

we can definitely characterize its actual complexity with regard to 

the problems to which the solution is reduced, using the LogRank, 

PolyRank and ExpRank values. 

Theorem 25 (Reductions between finite case problems) 

The following statements are true: 

1. Up to n0^k applications of an algorithm of 

PolyRankn0 = j results in an algorithm of 

complexity PolyRankn0 = k+j. 

2. Up to log(n0)^k applications of an algorithm of 

LogRankn0 = j, results in an algorithm of 

complexity LogRankn0 = k+j. 

3. Up to 2^(n0/k) applications of an algorithm of 

ExpRankn0 = 1/j, results in an algorithm of 

complexity ExpRankn0 = 1/k + 1/j. 

Proof: Again we omit proofs as they are mere algebraic symbolic 
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multiplications of the formulas corresponding to the definitions of 

the respective classes. 

There are of course more interesting reduction theorems. The core 

aspect for reductions within some finite interval n1..n0 is for the 

resulting constant, expressed as function of n0 and (n1+n0)/2 

respectively to allow the candidate algorithm to fit the definition of 

a certain complexity class. This generally involves computing the 

new LogRank, PolyRank or ExpRank values. But theorems 

describing relationships between lower and higher finite 

complexity classes can also be interesting. We leave such as open 

questions for further research. 

Observation 26 (Variable finite complexity) 

For some complexity class level l, and a (potentially infinite) 

sequence of increasing natural numbers a1,a2,… there exists a 

natural function f, such that for every i, we have that 

Explodea[i](f,l)=ai+1.  

Discussion: Essentially it can be that some function has infinitely 

many points where its finite complexity is small enough, however 

it never collapses permanently to such a favorable complexity. A 

function which grows extremely fast on successive powers of two, 

but very slowly in-between is one such example. In practice, it 

might be that a problem’s optimal complexity varies wildly from 

one input size (difficulty) to another, within the bounds of its 

general-case complexity (if such a bound exists).    

Finally, when solving a problem on the finite case, the data in 

Annex 1 which estimates the highest upper bounds for tractability 

for various complexity classes can prove of general interest. 

Section 4.2 Automated and assisted solving of computer 

science problems on the finite case 

In this subsection we present basic relationships between finite 

case and general case complexity classes for computer science 

problems. While in Section 3.2 we introduced the concept of finite 

complexity for natural functions, here we apply those concepts to 

refer to functions which describe the running times of algorithms 

and respectively of hint sizes. 

Section 4.2.1 General Approach 

Since Sections 4.1.1 and 4.1.2 refer to relationships between finite 

and general case complexity of natural functions in general, the 

results there apply both to ones representing the running time of an 

algorithm as well as those representing the size of its hint (under 

Definition 4). 

We adopt the notation f(n)/g(n) from general complexity classes 

(e.g. P/Poly translates to Polyn0/Polyn0) to reason about finite 

complexities analogously. Under Definition 4 as well as the 

discussion in Section 3.4 regarding output, when solving a problem 

for the finite case interval n1..n0, the actual program itself, S, will 

be of constant size. In fact, a program of fixed size exists such that 

it solves all intervals n1..n0 for some potentially distinct and 

perhaps very large Hintn0: namely one which includes an universal 

machine simulator (e.g. a registry machine simulator). 

The manner in which we choose to consider splitting the actual 

algorithm for a finite case problem between the fixed part and the 

hint is as much art as it is science. Knowledge of the problem 

domain as well as trial and error may lead to various choices in this 

regard. Nevertheless, the value of finite algorithmics lies in the 

conjecture that some problems do not admit a sufficiently efficient 

algorithm for the general case (or that identifying such is not 

possible), but do in fact admit some (maybe distinct) algorithms for 

finite universes of inputs. 

In our quest to identify a practical finite case solution to a problem 

on interval n1..n0, or determine that such does not exists (or that it 

is as hard as the general case), we can take the following approach. 

Approach 25 (Automatic Solving of a Problem Instance) 

Given some problem Prob, specified by inputs 1-7 described in 

section 3.4, we can construct a fixed algorithm to solve it which 

takes the following rough steps: 

1. It considers some enumerable (potentially finite) 

family F of fixed hinted algorithms S. This family can 

be specific to the problem domain of Prob – it can 

essentially describe “what we can expect the source code 

of some algorithm which solves it to look like”. Each 

algorithm in this family is hinted, as per Definition 4. 

2. It maintains some internal state s, describing the 

current status of the search for a solution. This state 

can be of rather large size, so long as it fits the space 

complexity bounds imposed on the automatic solving 

algorithm itself. It may consist, for example, of the 

following: 

a. Promising Algorithms and methods of Hint 

generation. 

b. Algorithms and Hints which are adequate for some 

specific input sizes (difficulties). 

c. Statistics on promising algorithms, hints and hint 

generation methods collected in step 3e below. 

d. Information on negative results (inadequate algorithms 

/ hints / hint generation methods), analogous to points a)-c) above. 

3. While a solution is not found, it explores some more, 

by doing the following: 

a. Pick some algorithm S from the family F, 

based on the internal state s. 

b. Choose a potential hint hintS for S, from the 

finite set of potential hints, by some method GENS. 

c. Evaluate S preliminarily by running it on 

several inputs within the relevant domain, on which it 

has not been run before, using the hintS. For example, S 

can be run on Golden Data tests, for increasing input 

sizes (difficulties) from the ones in v1 up to v4.  

d. If S takes longer than the upper bound for the 

desired complexity on a particular input, or its course of 

execution seems unpromising, halt it (to be potentially 

resumed later). Note that given the theoretical framework 

concerning finite complexity classes, for a given input 

size (difficulty) any desired complexity translates to a 

precise upper bound on the running time (or number of 

operations of the algorithm). The constant is never 

“hidden” in finite algorithmics. 

e. Collect the following data with regard to the 

execution of algorithm S on hintS and the relevant test 

cases: 

 Running Time and Space Consumed for some input. 

Statistics regarding  

 Input/Output correlations. These can include error rate, 

such as Specificity and Sensitivity and so on. 

 Full or partial snapshots of its internal memory state at 
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various runtime moments. These are taken in the hope 

that correlations can be made between them and the 

desirability of the overall behavior of some algorithm 

f. Use the data collected above to update the internal state 

describing the status of the search. Naturally, the data could be 

synthesized and aggregated before or after update of the internal 

state, in order to reduce its volume. 

4. Once a sufficiently adequate pair of algorithm S and 

hint generation method GENS are identified, it 

outputs them (i.e. their source code and for GENS its 

hint) as the solution. 

Discussion: The approach essentially considers algorithms and 

hints in some arbitrary order, tests them on available inputs and 

finally chooses the first one which is adequate enough. The art of 

producing an efficient implementation of this approach for some 

problem domain lies particularly in identifying some good way to 

choose this arbitrary order. 

By introducing Approach 25 we are effectively shifting attention of 

researchers from focusing solely on understanding correlations 

between input/correct output pairs within a problem domain, to 

focusing on correlations between structure and hints of algorithms 

and their relative performance / adequacy with regard to that 

domain. This approach can be reminiscent of the domain of AI and 

Machine Learning. 

Approach 26 (Family of algorithms for any problem 

domain) 

For Step 1 of Approach 25 above, the following family of 

algorithms can be considered. 

Given some object-oriented programming language grammar (e.g. 

C#,Typescript, etc.), consider only source codes (algorithms) 

which satisfy the following conditions: 

1. They include as reference some or all types 

corresponding to data structures and algorithms included 

in part 5 of the input, as described in section 3.4. The 

algorithms which are not meant as general purpose data 

structures, are to be wrapped in a type called a Solver, 

which is essentially a data structure with a single Query() 

method producing the output. Part 5 of the input can be 

restricted to only what researchers believe to be relevant 

to the problem domain. 

2. They define at most 20 new types (interfaces + source 

code implementation). 

3. Each defined type contains exactly most 20 public 

methods. 

4. Each defined type contains at most 20 private methods. 

5. Each defined type includes at most 20 internal variables 

(which can be collections such as lists of dictionaries 

over other types). 

6. Each defined type includes at most 20 “magic constants”, 

which are actual values of some type. 

7. Each method takes at most 20 (typed) parameters. 

8. Each method defines at most 20 local variables (for all 

levels of imbrication). 

9. Each executable line of code, consists of one of the 

following: 

a. A statement, which can be either: 

i. An assignment to some variable in scope from the 

result of the evaluation of an expression over 

variables in scope. 

ii. An evaluation of an expression over variables in 

scope without storing the resulting value. 

iii. A loop-related execution flow control directive, 

such as break or continue. 

By the definition of expression above we include 

public member methods invocations on some of the 

underlying parameter values, as well as parameters 

lists buildups using operators such as comma (,). 

Type properties or parameterless methods are 

represented as methods taking no parameters. 

b. A conditional branching of the form IF(expression) then 

statement else statement. 

c. A conditional loop of the form WHILE(true) then 

statement. This allows for both initial and final loop 

condition checking, via inclusion of an appropriate IF 

statement. 

d. A return statement of the form RETURN(expression). 

 

10. The expressions which occur throughout all methods are 

defined globally. Source code within methods uses them 

by specifying the corresponding IDs and the required 

assignment. The operators within an expression can be 

only invocations of methods on underlying types, or the 

parameter list builder (e.g. comma). All types are boxed. 

As such, for example a+b is represented as 

a.Invoke(“AddWith”, b). 

11. There are at most 20 “heavy” expressions globally, 

which are defined on between 6 and 20 variables. 

12. There ar at most 400 “light” expressions globally, which 

are defied on at most 5 variables. 

13. Values are passed by reference to invoked methods. 

Thus, ther actual value can be changed by the method if 

it so choses or needs. Non-destruction of the input can be 

achieved via cloning.  

14. No method has an imbrication level above 5 (e.g. IF 

contained within another IF contained within a WHILE, 

and so o). Algorithms which involve imbrication levels 

beyond this value can actually be rewritten to use private 

method calls. 

15. There are at most 20 “heavy” methods globally, which 

have an imbrication level of either 4 or 5. All the others 

have imbrication level at most 3. 

16. There are at most 400 lines of code for any single 

method body. 

17. There are at most 20000 lines of code for all the 

methods’ bodies together.  

18. There are at most 400 global magic constants, besides the 

ones allotted to each type.  

19. There exists a single type, which is the actual Solver for 

the problem at hand which defines the following 

interface: 

a. Initialize(hint) – a method which initializes the 

solver with the corresponding hint, allowing any 

precomputations if required. 

b. Query(instance) – a method which returns the 

output for specified instance of the problem. 
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Discussion: The above family of fixed algorithms is understood by 

us, the author, to include essentially everything that a human 

researcher could reasonably discover on his own with regard to any 

problem domain. In fact, to the best of our knowledge, almost all 

(if not all) currently known algorithms for solving any general case 

problem can be effectively mapped to some member of this family. 

The value 20 which appears repeatedly was chosen arbitrarily to 

provide a rather generous upper bound. It is most likely that a 

lower value, of something like 5 would still allow sufficient 

coverage of everything which could be of interest to researchers. 

Furthermore, for specific problem domains, just a fixed algorithm 

of much smaller sophistication can be hypothesized to solve the 

problem on sufficiently large input sizes (difficulties), given the 

right hint. In that case, the quest for a solution simplifies to the 

quest for a proper Hint. 

Do note that the family of algorithms described in Approach 26 is 

universal. Namely, it includes algorithms which simulate a registry 

machine. Given also that the algorithms are Hinted, it is possible to 

effectively circumvent any limits placed on imbrication depth, 

source code size or anything of the like, simply by moving the 

actual algorithm to the Hint. This however, runs contrary to the 

manner in which we suggest this approach has value. The Hint 

should be specific to the problem domain. For some problems (like 

3CNF-SAT for example) it could include some bending of this rule 

– for example to allow for formulas specific to a particular input 

size to be evaluated in the context of conditional branching –. 

Nevertheless, the Hint should be very specific to the problem 

domain itself and in fact also to the particular finite bounds for 

which a solution is sought out. 

For some very hard problems, it could be that allowing the 

program to modify itself essentially by incorporating parts of the 

hint or of the problem instance as part of its de-facto code might 

prove interesting avenues for exploration. Such problems might 

include simulation of human consciousness, resolving halting 

problem for finite cases and perhaps others not yet considered by 

humanity. Nevertheless, allowing a program to essentially alter 

itself should most likely not be the initial main focus of research 

within finite algorithmics. 

Once a candidate fixed algorithm S which shows sufficient 

promise on small problem instances has been identified – for 

example one which works correctly and efficiently on all inputs up 

to the v1 threshold and on all other inputs on which it had been 

tested -, the only remaining issue is to determine a suitable hint for 

it for larger instances. The following approaches can be taken 

either alone or in combination: 

 Exhaustive Hint enumeration. For problem instances 

of small size, this could potentially be done, especially if 

a convenient finite complexity class is suspected for the 

hint size with relation to input size. This could also be 

used as a starting point for problems where we are 

essentially clueless as to what a proper hint might be. For 

small enough instances, a starting point could be 

Deterministic Finite Cover Automata [8] which correctly 

recognizes the finite language of some decision problem 

– thus allowing all cases to be answered correctly and 

efficiently. 

 Inductive Hint construction. Identify an algorithm 

which, given some hints for problem instances of smaller 

input size (difficulty), it constructs one for instances of 

larger size. This algorithm itself could be sought out 

using Approach 25 and 26. We would suggest however 

that it takes itself a hint of very small constant size (if 

any at all). The input on which it operates is the set of 

hints for smaller input sizes. 

 Adaptive Hint construction. Use existing and future 

techniques to determine causal correlations between 

events – such as Deep Learning models -, to analyze the 

data collected in step 3e of Approach 25 (including 

correlations between parts of the memory state at runtime 

and ultimate behavior of the algorithm – correctness, 

timeout, etc.) to hypothesize, test and prioritize potential 

hints over others, as well as to eliminate obviously or 

apparently invalid ones. These techniques can also be 

used to alter and combine successful hints so that the 

search for an adequate one converges faster on an 

acceptable solution. 

 Tapping Randomness. Include randomness in decision 

making with regard to which variation to try next or how 

to prioritize approaches. Many surprisingly efficient SAT 

Solvers today employ it. 

 Multiple Arm Bandits. Ultimately, the quest for a 

proper hint, using some automated method, involves 

allotting a finite resource – running time – between 

several existing or new avenues of exploration: be it an 

existing hint is to be tried out on more cases for 

gathering further data, one is to be transformed by some 

rule or combined with another under some other method 

or some other random variation is to be introduced. 

Sometimes, the expected benefit of trying a particular 

method or transformation over another is unclear or 

cannot be known in advance. Taking such decisions, 

including with regard to how to balance exploration and 

exploitation pertains to a well-known computer science 

problem called Multiple Arm Bandits (see [9] for 

example). 

Finally, at all stages of the approaches described above, a human 

researcher could intervene and make adjustments based on his own 

creative and rigorous judgment, potentially leading to further 

speed-ups in the search for a solution. 

Note the that the approach described in this sub-section includes 

any currently known Machine-Learning algorithm, including Deep 

Learning with multiple number of layers in some neural network: 

The output of the learning is in our terminology the Hint to the 

algorithm, which, itself is merely a simulator of a neural network. 

The actual learning algorithm (e.g. Reinforced Learning) is just 

one potential method to be used in line 3.f) of Approach 25. Any 

such currently known learning algorithm is itself contained with 

the finite family of algorithms proposed by Approach 26. 

Furthermore, Approach 25 could be refined to include the theory of 

Schmidhuber related to Gödel machines [10]. This can be applied 

either with regard to proving correctness or to simply speed up the 

search for an optimal algorithm. 

Section 4.2.2 Elementary Results 

In this sub-section we present some elementary results pertaining 

to finite complexity of computer science problems, considering the 

approaches described in Section 4.2.1. 

In this sub-section we limit our attention to problems which have 

polynomial or smaller output sizes. This includes all decision 

problems (where the output is a single bit). The restriction that the 
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output size be polynomial is most of the time natural, since outputs 

of super-polynomial size would, in themselves, require a long 

running time to merely write out. 

Observation 27 (Reduction to decision problems) 

Any problem which has an output of polynomial size in the input 

can be reduced to a liner number of applications of a decision 

problem. 

Proof sketch: Consider the decision problem asking “does there 

exist any correct output for this input instance, which is smaller 

than some natural number x?”. By using binary search over the 

output space for a given input instance, one can, in a number of 

probes linear in the input size (logarithmic in the size of the output 

universe) determine some correct output using the solution to the 

decision problem above. 

Theorem 28 (Every verifiable problem admits a Polyn0/Expn0 

finite case algorithm) 

For any problem Prob, which admits a general case verification 

algorithm V able to decide for any (input,output) pair it the output 

is correct for the given input, there exists a hinted algorithm S, 

such that for any finite case upper bound on input size n0, there 

exists an appropriate hint enabling S to solve Prob[n0] correctly 

for all inputs and in time Polyn0. 

Proof sketch: Given a Verification algorithm, one can immediately 

construct an inefficient general case algorithm which produces a 

correct output for any given input: Simply enumerating all 

potential outputs for an input and using the verification algorithm 

to pick the correct one. Given this, the correct output can be 

precomputed for any input of size up to n0. There are 2^(n0+1) – 1 

such potential inputs. The corresponding correct outputs could then 

be stored directly as Hint. An algorithm which, given an instance 

in this 2^(n0-1) universe, simply looks up position where the 

correct output is stored in the hint, using binary search, takes 

log(2^(n0-1)-1) < n0 steps to identify such. It can then merely 

output the corresponding output, which is Polyn0, resulting in a 

total running time within the Polyn0 finite complexity class.   

Corollary: Any verifiable decision problem admits a Linear/Expn0 

finite case algorithm for any n0.  

Since a decision problem has constant output size (namely 1 bit) 

only the linear time taken to identify the correct index of the output 

determines complexity. 

Discussion: Note that this method gives an algorithm to determine 

the correct output, not also to prove its correctness. Nevertheless 

the correctness for this particular construction can steam from the 

construction of the hint itself: The output is correct, because given 

the manner in which algorithm S and its Hint were constructed, it 

cannot be incorrect. However, given some arbitrary hint 

determining if it is indeed adequate is not implied by this theorem. 

Complexity: For decision problems, the above approach involves 

merely 2*(2^(n0+1)-1) applications of the verification algorithm 

V. For problems of polynomial output size this is multiplied by the 

maximum size of the output universe, which is of the order 

2^O(n0^c) for some constant c. In both cases, executing this 

approach directly for any n0 has general case complexity within 

EXPTIME, so long as the algorithm V is itself within this class 

(e.g. it is in P). While not generally considered tractable, 

EXPTIME is not the worst general case complexity class out there. 

Theorem 29 (Solving verifiable problems optimally in 

the finite case is computable) 

For any problem Prob, which admits a general case verification 

algorithm V able to decide for any (input,output) pair it the output 

is correct for the given input, for any natural number n0, there 

exists an unhinted algorithm which determines the optimal 

algorithm for solving Prob[n0]. 

Proof sketch: Any implementation of Approach 25, which 

exhaustively enumerates all algorithms and potential hints of joint 

size up to at most the size of the algorithm and hint resulting from 

the application of Theorem 28 for Prob[n0] will consider the 

optimal running time algorithm among them. Hint sizes outside 

Expn0 are pointless, since an algorithm linear in input+output size 

(thus optimal) exists for such a hint. Considering algorithms which, 

together with their hints, are of size over Expn0 is again pointless: 

the algorithm constructed in Theorem 28 is of very small constant 

size, thus allowing the joint size to remain within Expn0. As such, 

trial of algorithm/hint pairs only within these limits suffices. 

Complexity: The complexity of employing this approach without 

further refinement is as follows. For every candidate algorithm/hint 

combination in the input universe, verifying its correctness can 

take at most 2^(n0-1)+1 applications of the verification algorithm 

V and similarly many applications of the candidate algorithm. For 

decision problems, the input universe itself is only slightly (by a 

very small constant) larger than 2^(n0-1)+1. So this reduces to 

~2^(2*n0) applications of V and the algorithm itself. These are 

within EXPTIME if V and the candidate within EXPTIME 

themselves. For problems with larger, but still polynomial sized 

outputs, this is multiplied by some factor 2^(O(n^c)) for some 

constant c, representing the increased input universe size. This 

keeps the complexity within EXPTIME, so long as V and the 

candidate are themselves within EXPTIME. The universe of 

potential algorithm/hint pair is doubly exponential in n0, making 

the total complexity no worse than 2EXP, which is within 

ELEMENTARY, thus computable. 

Discussion: In practice, the input universe will be much smaller. 

Most likely only hints of Polyn0 or SemiPolyn0 size will be 

considered and the family of fixed algorithms for a problem 

domain will consist of just 1 or sometimes a very small subset of 

those described by Approach 26. This reduces complexity to at 

most EXPTIME. Also, most candidate algorithm/hint pairs will not 

be allowed to run beyond some desired complexity (most likely 

Polyn0 or SemiPolyn0) and will not be run on all possible inputs for 

verification purposes, resulting in further running time reductions. 

Theorem 30 (Solving verifiable problems optimally in 

the general case is computable if they have a 

determinable collapse threshold) 

For any problem Prob, which admits a general case verification 

algorithm V able to decide for any (input,output) pair it the output 

is correct for the given input, which has a known or determinable 

n1 such that Exploden1(Prob,l)=+INF for some desired complexity 

hierarchy level l, there exists an unhinted algorithm which solves 

Prob in the general case complexity corresponding to finite 

complexity level l, so long as the verification algorithm V is 

belongs to this complexity level itself. 

Proof sketch: One can apply the method in Theorem 29 for ever 

increasing n0’s (for example taken under repeated doubling or 

repeated squaring) until it can be established that the n1 threshold 

has been reached. If an upper bound is known for it in advance, n0 

can be taken to be directly n1. The method in Theorem 29 is 
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modified to output not just one suitable algorithm, but all of them. 

This multiplies the size of the output of the method by at most the 

size of the input universe, making it as large as 2^(2^n0). The 

correct algorithm, which solves the general case problem within 

the desired complexity, is necessarily amongst this outputted set. In 

terms of general complexity theory, this set has size O(1). As such, 

the general case algorithm constructed consists of running all such 

algorithms (O(1) of them) for any input instance given, and 

verifying each of their outputs using the algorithm V, picking the 

correct one. So long as the complexity of V is no larger than the 

desired class, this results in an algorithm of such general case 

complexity class. 

Complexity: The complexity of employing this approach without 

further refinement is essentially within at most some log(n1) factor 

[for repeated doubling] of the complexity of a single application of 

the method under Theorem 29 for n1, modified to output any 

acceptable algorithm/hint pair (which does not modify the running 

time complexity of the brute force approach). As such, as argued 

for Theorem 29, this is within 2^(2^n1)), which, ironically enough 

is O(1) in terms of general case complexity.  

Discussion: Note that by Theorem24 any problem which admits a 

general case algorithm of some corresponding complexity (e.g. P) 

also has such a fixed n1. In practice, n1 may or may not be 

knowable in advance. It can be guessed or some rule for its 

determination hypothesized. For example, it can be speculated that 

if the finite complexity class has not exploded for 5 successive 

repeated squaring applications, then this threshold has been met or 

exceeded. Or it could be speculated that its finite complexity class 

is monotonically non-increasing with increase in input-size (this is 

not always the case). 

Note that for the output produced by the approach in Theorem 30 

can be further trimmed down, both in practice (as some candidates 

are eliminated as more and more input instances are processed) and 

via theoretical reasoning, by a researcher which is able to prove 

that one such is actually always correct. A formal proof of this may 

itself be rather lengthy (e.g. consider the proof for classification of 

algebraic finite simple groups, which “has around 15.000 pages, 

spread through mathematics literature”). If it exists at all! Given 

Gödel’s incompleteness theorem (see [11]), there are true 

statements expressed in first-order logic over natural numbers 

which cannot be proven. The desired proof might happen to be one 

of them. In the eventuality a proof exists, a researcher could again 

employ this theoretical framework and the approaches described in 

this paper to develop an algorithm to automatically find it. This is 

possible since verifying formal proofs is in fact a rather straight 

forward computer, thus a verification algorithm exists. Finding 

such a formal proof, or showing that one does not exists – that is 

the hard part.  

The significance of Theorems 28-30 is rather major: It shows that 

finite algorithms can, at least theoretically, solve almost all 

problems currently considered hard – if as of now, only in 2EXP 

time – which may itself be a rather long wait. Nevertheless, their 

existence allows the problem of finding a solution to a computer 

science problem to be rephrased in terms of tradeoffs between the 

following three dimensions: 

 Running Time of the solution algorithm S. 

 Hint Size for algorithm S. 

 Running time of computing a suitable algorithm/hint pair 

by some automated method, given existing knowledge. 

There are undoubtedly many interesting questions and results 

pertaining to reductions and relationships between finite case 

problems and either general or other finite case problems. These 

include the “meta-problems” induced by some general problem, 

under some interesting or practical assumptions: the problem of 

finding a suitable algorithm for it, of finding a suitable hint for 

such and many more. Further interesting questions include 

applying the approaches here recursively upon themselves, to 

potentially produce faster than brute-force algorithms for solution 

finding. We leave such questions outside the scope of the current 

paper and propose them as avenues for further research. 

One direction which seems particularly useful to us for priority 

examination is that of problems which fall in the following 

categories: 

 They belong to the Polyn0/LogRankn0=2 finite 

complexity class. This entails the existence of a 

reasonably small number of potential hints (up to 

n0^log(n0)) – thus making exhaustive search quite 

feasible. 

 They have known and relatively efficient output 

verification algorithms. All NP-Complete problems fall 

into this category. 

 Preferably they admit natural formulations as decision 

problems. Determining satisfiable assignments for a 

Boolean formula is one such example (with the 3CNF-

SAT decision problem). Computing Discreet Logarithm 

is not. 

 There exists some non-trivial amount of solved hard test 

cases within existing body of research. 

Section 4.3 Reasons for considering finite algorithmics 

valuable 

The most important argument which needs to be made for 

acknowledging the importance of the study of finite algorithmics is 

why we should expect that finding a solution to the finite case of 

problems is easier than finding one for the general case. 

We, the author, present the following arguments as indications that 

this is in fact the case: 

1. There exist problems which are incomputable in the 

general case, but computable in the finite case. 

Consider the following problems. 

a. For classical computers: Optimal String 

Compression – determining the shortest program 

which outputs a given string. In the general case this 

is equivalent to computing the Kolmogorov 

complexity of the string and is incomputable. 

However, if we limit the problem to the practical 

application of considering only strings of length up 

to some n0, and limit the running time of the 

program to at most Expn0, the problem becomes 

computable: one can simply enumerate all programs 

of length no larger than n0, and run them until they 

either time out, produce a wrong string or produce 

the desired string. Afterwards the shortest correct 

one can be selected. In fact, one could even try to 

determine a suitable hinted algorithm using 

Approach 25 and some hint generation method 

which allows some, or most strings which appear in 

practice to be compressed efficiently (NB: With 

regard to any algorithm, there are strings which are 
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incompressible). The original proof by contradiction 

stating that Kolmogorov complexity is 

incomputable relies on the assumption that length of 

the source code of any such algorithm is shorter 

than the length of at least one target string. This 

however does not apply to the finite case, where 

strings have bounded size: A Kolmogorov 

complexity computation algorithm can indeed exists 

for this case (and does: for example one which 

includes precomputed output for each string), 

however it is necessarily longer than n0. Thus, 

solving the finite case, Expn0 bound running-time 

Kolmogorov complexity is actually in EXPTIME. 

b. For Finite Automata: Recognizing Prime Numbers – 

using a Finite Automata to determine if a string 

denoting the representation of an integer in some 

base (e.g. unary, binary, etc.) corresponds to a prime 

number. Finite Automata are unable to recognize 

this language. So for this computation model, 

PRIMES is incomputable. The proof is a relatively 

straight contradiction, using the Pumping Lemma 

[12]. The problem of recognizing all prime numbers 

up to some upper threshold n0 however is 

computable using Finite Automata: it is in fact a 

finite language and all finite languages are regular. 

Note however, that different automata are required 

for different n0-s. 

This illustrates that the finite case can be simpler than the general 

case. In fact, it is so for some very practical problems. Kolmogorov 

complexity features prominently within Information Theory and 

Cryptology. 

2. There exist problems with large thresholds of 

complexity explosion. Consider the following problem, 

inspired by the Theorem of Classification of Finite 

Simple Groups: “Take some sort order for finite simple 

groups, such that groups of smaller order appear before 

groups of larger order. When tied, consider some other 

arbitrary criterion, like number of generators or anything 

else desired. Given an index k of a group in this sort 

order, and a series of pairs of numbers representing 

elements within this group, output the result of the group 

operation acting on the elements, under some fixed (but 

arbitrary) numbering for them. The length of this series is 

logarithmic in the group order. “. The problem asks 

essentially to compute group operations consistently 

within a specified finite simple group. We can name it 

GROUPOP. Here the difficulty parameter is not the input 

size, but the order n of the group which also bounds the 

input size. As per the Theorem of Classification of Finite 

Simple Groups, there exist actually only three infinite 

classes (cyclic groups of prime order, alternating groups 

of degree at least five and groups of Lie type). All of 

these have simple representations. However, there exist 

another 27 finite simple groups which do not belong to 

any of the infinite families. Out of these 27, the Monster 

Group, of order M = ~8*10^53, stands out as it does not 

have a simple representation. As such, performing group 

operations in any of the other finite simple groups is 

computationally much faster than in the Monster Group. 

For cyclic groups for example doing group operations is 

as simple as multiplication modulo the prime which is 

the order of the group. This is actually logarithmic in the 

value of the group order. For the Monster Group 

however, Wilson has described a method involving two 

196882x196882 matrices [13]. Doing operations with 

these matrices is computationally very expensive, 

bringing GROUPOP outside Linear. Some other 

constructions have been proposed, however it still 

remains that the Monster Group is terribly difficult to 

work with. As such, one can say that 

Explode(GROUPOP,Linear) = M ~ 8*10^53. In fact, if 

operations within groups of the other two infinite 

families besides cyclic can be done in polylogarithmic 

time, we have that Explode(GROUPOP,PolyLog) = M ~ 

8*10^53. 

The value 8*10^53 is rather large – large enough to be 

considered non-trivial. The problem GROUPOP is rather 

simple up to this group order, and then it explodes 

drastically. Could it not be that something similar 

happens to other interesting problems, like Integer 

Factorization or 3CNF-SAT? Furthermore interestingly, 

given the fact there is a single Monster Group, the 

complexity of GROUPOP will ultimately collapse back: 

the super-linear complexity for M ~ 8*10^53 will 

ultimately be smaller than a single log factor of some 

larger group order. As such, we can state that 

Collapse8*10^53(GROUPOP, PolyLog) < +INF. 

Essentially, the finite complexity of GROUPOP is 

bitonic – small at first for quite some values, then it 

grows drastically large (rather quickly) and then 

collapses back to being small. From the point of view of 

a general case complexity theory, the existence of the 

Monster Group is fully irrelevant. The extreme difficulty 

of doing operations there, given the fact it is a singular 

finite case, is in fact O(1).  

Thus, finite case complexity theory offers a much better 

way to describe the structure of this problem than the 

general case one. 

3. There exist problems where precomputation specific 

to a certain input size is very useful. Consider the 

problem of determining the Minimum Spanning Tree for 

a given graph with n vertexes and m edges. This problem 

is relatively easy and numerous general case algorithms 

with near-but-not-exactly optimal complexity exist: from 

Kruskal’s O(m*log n) to Chazelle’s near-linear 

O(m*alpha(m,n)) [14]. However, there exists one 

algorithm by Petite and Ramachandran [15] of optimal 

complexity – which, mysteriously enough is still 

unknown. Whatever it is, their solution is nevertheless 

bound by it. The approach involves precomputation of all 

optimal decision trees on log(log(log(n))) vertices. In this 

situation precomputation can be completed in O(n), 

which is no larger than the complexity of the outstanding 

part of the algorithm. As such, the precomputation step 

can be done on-the-fly for each instance of the problem, 

without any need to store it as a Hint to some hinted 

algorithm separately, for purposes of improving running 

time performance. 

It could be that some very difficult problems (maybe 

even 3CNF-SAT) have solutions which involve 

precomputations for an input size (difficulty) of larger 

complexity class than the rest of the algorithm. If the 

result of these precomputations is short enough however, 
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we could simply store them as a Hint to some hinted 

algorithm, belonging to a favorable complexity class 

such as Polyn/Polyn. Note that computing the hint for 

some input size could belong to a much larger 

complexity class – such as SemiPolyn or Expn. However, 

this only needs be done once for all inputs of that size. 

Once computed, if it is short enough it could be used by 

a hinted algorithm to skip this potentially extremely 

time-consuming step. We, the author, strongly suspect 

that if practical solutions for finite or general case 3CNF-

SAT problems exist, they will involve reasonably sized 

hints which require nevertheless large amounts of 

running time to compute. 

4. Other expressive computational models show 

significant drop in complexity from general case to 

finite case. Consider potentially the closest relative of 

the Turing Machine – the Finite Automata. Consider a 

regular language with an infinite number of words. It can 

be succinctly described by a Deterministic Finite 

Automaton with some number of states. This number 

could then be reduced by computing the minimal 

automaton for the given language. So long as the 

language has infinitely many words, this is the best 

which can be achieved. However, when the attention is 

directed to a finite subset of this language – namely that 

of words which do not exceed some fixed finite length, it 

has been shown that the number of states could be 

reduced even further, using something called a 

Deterministic Finite Cover Automaton. This is basically 

an automaton which correctly recognizes the language up 

to words of at most the specified length, but it is allowed 

to error on anything longer. This is analogous to 

considering the finite case of some general case problem, 

where the sought-after solution is a specification for a 

Finite Automaton, not a registry machine. Deterministic 

finite cover automatons are expected to have a 

significantly smaller number of states than their 

counterparts for the unrestricted language. In fact, it has 

been shown that they have a smaller number of states 

than even their counterparts which recognize just the 

finite language precisely (are not allowed to error on 

longer words) [8] [16]. 

It could be that classical computers exhibit a similar 

phenomenon for at least some languages - namely that 

complexity of recognizing on such up to some finite 

length is much smaller than that of recognizing it on the 

general case. While classical computers are a much 

stronger computational model than finite automata, the 

two are still closely related. For example, every bounded-

space registry machine algorithm can be represented as 

an automaton which is initially fed the input and them 

some number occurrences of a special symbol, each 

corresponding to one clock tick of processing by the 

classical registry machine. The states of such an 

automaton are in fact the all the memory configurations 

the registry machine could encounter during its 

execution. While this representation is inefficient, it 

serves to illustrate the close relationship between the two 

computational models, for the finite case. 

Even for machines of larger or incomparable 

computational power (e.g. Quantum Computers, or the 

theoretical Blum-Shub-Smale machines [17]), the fact 

there exists sufficiently expressive computational models 

(the Finite Automatons) which experience complexity 

collapse for the finite case, serves as an indication the 

same could occur for these models also. 

5. There exist interesting problems which are outside 

2EXP on the general case. Consider any EXPSPACE-

Hard problem for instance. Reachability in Petri Nets 

[18] is quite practically interesting and has recently been 

shown to be outside ELEMENTARY, thus outside 2EXP 

[19]. Deciding if two regular expressions which allow 

squaring (requiring exactly two adjacent copies of the 

operand) represent different languages is in EXPSPACE 

[20], as is the validity problem for extended linear 

temporal logic with times. Besides these, many problems 

within Game Theory are PSPACE-Complete (e.g. 

solving generalized Tic-Tac-Toe), while others still are 

actually incomputable. 

For these categories of problems, there is no hope of 

solving them in practice by discovering an efficient 

algorithm for the general case. The only hope to ever 

solve these is within finite algorithmics – solving not the 

problem in general, but some restriction of it to a finite 

case. Here, one can apply Theorem 28 to show that a 

Polyn0/Expn0 algorithm exists. Finding one however, 

may be outside 2EXP since the verification algorithm 

itself could be outside 2EXP. Nevertheless, the existence 

of a Polyn0 algorithm (if but of exponential size) shows 

that the finite case is indeed easier than the general case 

for interesting practical problems. 

A prominent result within finite algorithmics will be one 

which gives a solution to one of these practically 

important, but generally intractable problems for some 

non-trivial practical upper bound. 

6. Finite case problems are a particularization of the 

corresponding general case problems. Essentially, we 

as researchers have reduced the practical finite-case 

problems we are interested to solve to some potentially 

harder ones – namely the general case. While sometimes 

the general case is easy enough, this is not always the 

case. As the easiness of 2-CNF-SAT relative to arbitrary 

Boolean formula satisfiability illustrates, sometimes the 

particularization is much easier than the general case. 

Further research should focus on relationships between 

finite case and general case for specific problems, to 

determine where this is the case and where not. The 

theoretical framework introduced in Section 3 serves as a 

tool. 

7. There exists an automated method for finding an 

optimal solution to verifiable problems in the finite 

case. The proof sketch of Theorem 29 shows how an 

optimal algorithm for such problems can be constructed. 

There exists an analogous result from Jones [21] for 

general case verifiable decision problems. He essentially 

constructs an algorithm which runs, in a dove-tailing 

fashion all conceivable algorithms until one stops and 

produces the correct output. While asymptotically this is 

optimal for the general case, the hidden constant is 

astronomical – it is exponential in the index of the 

suitable algorithm in the enumeration. This makes it 

generally unusable in practice. Note that Jones’ method 

does not actually identify the suitable algorithm. For 

each problem instance, there could be some different 
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algorithm which finishes first and outputs the correct 

answer (which is then verified by the verification 

algorithm). In the finite case, on the other hand, after 

spending some initial (potentially very large) amount of 

time, the optimal algorithm is determined (it’s source 

code becomes available). Thus, it can thereafter be 

directly applied to any instance (up to the finite upper 

bound) where it performs efficiently enough. Using 

Jones’ method for the finite case would entail dealing 

with the astronomical constant on every run of the 

algorithm – on every instance. Furthermore if a problem 

did not admit a general case efficient algorithm, his 

method no longer yields an algorithm of optimal 

complexity, since the index of the most efficient 

algorithm is no longer a constant. 

8. There have been prior successful applications of the 

approach of automatically generating algorithms. The 

field of AI and Machine Learning, particularly Neural 

Networks is a perfect example where trying out and 

adjusting an algorithm, within a certain family results in 

something very useful. For most AI and Machine 

Learning applications (such as image recognition), the 

problem researchers were trying to surmount was the 

apparent lack of proper succinct description of a method 

to determine the correct output for a given input. For 

example, describing formally what “an image of a cat” 

was (or to go further, what “an image of a happy person” 

was) proved very difficult. Nevertheless, this was 

circumvented by employing an automated method of 

trial-and-error to essentially determine an algorithm 

which is good enough. 

The same could be applied to the situation where the 

difficulty lies not in identifying a formalism to describe 

the input/output relationship, but in finding an efficient 

algorithm to compute it, if but only in practice. As with 

AI and Machine Learning, we can now regard this 

process as the result of a combination of automated trials 

and researcher insight, not just of the latter. 

The arguments above which serve to indicate that finite-case 

problems are indeed easier to solve (at least to us humans, 

potentially aided by computers) than their general case 

counterparts. However, there are two more arguments of a more 

abstract nature to indicate the existence of value in the approaches 

presented. 

1. There exist problems which admit rather simple and 

short efficient algorithms, but which require complex 

theory to prove their adequacy. The clearest example 

can be considered the string matching algorithm due to 

Knuth-Morris-Pratt (KMP) [22]. It has less than 10 lines 

of code, a single method with no recursion, loop-nesting 

of at most 3 and all its expressions are over no more than 

5 variables. Nevertheless, the theory behind it, especially 

with regard to proving its linear running time 

complexity, is the most likely cause why it has not been 

discovered earlier. 

2. Physical phenomena could exist which can be 

harnessed to allow rapid speedups for computations, 

but at some great cost. Given current mainstream 

understanding of physics, concerning time-dilation, if we 

were able to send a computer with sufficient battery 

power to a place far away from any gravity wells (like 

planets, stars or black holes) and have it stand as still as 

possible relative to Earth, some important speedups can 

be attained. Other phenomena might exist which to allow 

for much greater speedups (quantum non-locality seem 

like a good place to start a search). These however, might 

entail travelling to distant regions of the Cosmos, or 

expending large amounts of resources, like battery 

power. However, this can be regarded as a one-time-cost. 

With the methods provided for by finite algorithmics, 

such a sped up computer could then rely back the optimal 

algorithm (e.g. via radio waves) for some problem. 

Thereafter, we could use it solve all practical instances, 

without the need to incur the one-time-cost ever again. 

Section 4.4 Application of techniques to three well 

known problems 

In this we present some directions for practical application of the 

theory and techniques presented within this paper to three hard 

problems. They are intended to be viewed as just an example of 

how the quest for adequate solutions can be altered with the 

introduction of finite-algorithmics. It is outside the scope of this 

paper to propose (much less test experimentally) a fully specified 

approach or method which can be employed to solve them. 

Nevertheless, we, the author, are confident that ideas formulated 

within the context of finite algorithmics – either based on the ones 

presented below or others – will eventually lead to an adequate 

solution to such, if one exists. 

The main intended contribution of this section is to show, by way 

of example, how the change in reasoning due to finite algorithmics 

can lead to fundamentally different avenues of research for hard 

problems, from the ones currently pursued by computer scientists. 

Section 4.4.1 3CNF-SAT 

The following ideas can be applied to solving 3CNF-SAT, in the 

context of finite algorithmics: 

1. Consider only families of hard cases. For example, for 

an n-variable formula, do not include in analysis clause 

configurations which are conjunctions of two or more 

formulas over less than n variables, as such could be 

solved recursively separately. Also ignore families of 

known easy cases. For current heuristics published in 

literature this means formulas with less than 2 or more 

than 5 clauses per variable. 

2. Discover specific problem structure incrementally. 

Examine what makes some 20-variable 3CNF-SAT 

formulas harder to solve than others, for some algorithm 

or family of algorithms. It could be the existence of some 

tuple of clauses or some computable trait of a larger 

subset of clauses. Then look at 21-variable formulas and 

find which additional traits (besides those applicable 

from the 20-variable case) predict hardness. Then at 22-

variable and so on. How many additional “hard” 

formulas specific to an n+1 – variable case are there 

(excluding those for formulas in up to n variables)? Do 

they belong to some finite number of families (we 

strongly expect a negative answer)? Is the number of 

such growing rapidly or slowly? How can they be 

described succinctly so as to potentially allow their 

storage as hint to some algorithm? Do same for 200- or 

2000- variables randomly built 3CNF-SAT formulas. 

Such analysis could be aided by tools from AI and 
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Machine Learning, which may discover unexpected or 

counter-intuitive correlations. 

3. Discover what makes candidate algorithms actually 

solve hard instances when they eventually manage it. 

For hard instances examine what actual choices (e.g. 

“lucky random assignments”) allowed their eventual 

resolving? How do these choices correlate with the input 

instance (or part thereof) and between themselves? Is this 

knowledge (or at least part thereof) common to several 

hard instances? Can all such knowledge for some n-

variable instance difficulty be represented succinctly and 

efficiently enough so as to allow a Polyn0/Polyn0 

algorithm to use it to solve all much faster on subsequent 

runs? Is at least part of it common to many instances? 

Like with point 2 above, AI and Machine Learning tools 

might prove very valuable. 

4. Discover predictors for candidate algorithms non-

performance. Discover similar correlations as those in 

point 3 above, but for situations where a candidate 

algorithm performs very poorly. How can “really poor” 

choices be described formally and succinctly, so they can 

be avoided on subsequent runs? 

5. Consider a family of algorithm/hint pairs (or a fixed 

algorithm with a family of hints). Discover favorable 

and unfavorable correlations between parts of the 

content of the algorithm/hint themselves and 

performance/adequacy in trial runs. What are good 

predictors for good/poor performance? Is it having a 

particular while loop in a certain place? Or doing 

random-restarts in some describable fashion? 

Researchers have been more or less attempting this step 

manually so far – leading to the discovery that random 

restarts are key to performance of advanced SAT Solvers 

[3]. However, formal methods from AI and Machine 

Learning and not only could be employed to deduce 

many more such correlations much faster. 

6. Consider correlations between memory state of 

candidate algorithm within a family and 

performance. It could be that for some family of 

algorithms, a certain memory state (or part thereof), if 

encountered at runtime, is strongly correlated with very 

poor performance (for example a particular choice of 

random assignments, or set of impossible assignments 

deduced). It can be regarded as similar to steps 3, 4 and 5 

above. Unlike steps 3 and 4, analysis aims not to learn 

something about the structure of instances themselves 

with regard to the candidate, but about the runtime 

behavior (which can be common to multiple candidates 

within a family) across some test battery, thus learning 

something about the desirability of having the memory 

state characterized in a particular fashion. Unlike step 5, 

here the analysis focuses not on the source code / hint 

contents used, but on the actually runtime memory state 

(which might be common at least partially to several 

algorithm/hint pairs). Like with points 2-5 above, tools 

from AI and Machine learning (and not only) could be 

employed. 

7. Perform the same analysis as step 6 above not for a 

single memory state but for a short sequence of such 

states. Essentially, this calls for analysis to be expanded 

from examining single snapshots of memory to 

examining short “movies” of such snapshots (not 

necessarily sequentially chosen). 

8. Use some form of automatic recombination and 

selection method to generate new candidate 

algorithm/hint pairs and maintain the set under 

consideration within desired size limits. This entails 

essentially using the information gathered in points 2-7 

above to rank, modify and combine algorithms / hints 

such that one representing an adequate solution is found 

much quicker than by exhaustive enumeration. An 

example of a modification is to make an algorithm do a 

full or partial restart every time its runtime memory state 

can be characterized as “unfavorable” as per data 

obtained under methods 6-7 above. An example of a 

combination is to run two or more algorithms in some 

dove-tailing fashion for a number of steps and then 

decide how to continue based on their joint memory 

state. Other methodologies like those specific to genetic 

algorithms or again those employed in AI and Machine 

learning presently can be readily employed. Ranking or 

more specifically selection is required to keep the 

candidate set size within the space limits imposed by 

whatever hardware is attempting to find the solution. 

9. Use ideas 1-9 above and others to incrementally generate 

algorithm/hint pairs for increasing difficulty. This way, 

the information collected with regard to solutions of 

instances of lesser difficulty (smaller number of 

variables) can be exploited to speed up and obtain similar 

information more difficult instances. 

The ideas described above are meant to speed up some automated 

or semi-automated search for a suitable algorithm. However, one 

such may not exists. Even in that case, having a good choice of a 

heuristic algorithm, accompanied by a good choice of a hint can 

result in a huge drop in running time (if though perhaps not enough 

to make it fit some desired finite complexity class like 

SemiPolyn0). It could be that such drop is much higher than the 

time actually consumed to generate the pair. After all, as per 

Theorem 28, 3CNF-SAT admits a Polyn0/Expn0 algorithm. So the 

quest is actually for a more acceptable tradeoff between hint size 

(more specifically hint generation running time) and algorithm 

running time. 

A final trick could be employed in practice. The universe of 

potentially hard formulas over n variables is rather large. It is of 

the order of Comb(4*Comb(n,3),4n)*2^(4n) for formulas with up 

to 4 clauses per variable, which is much larger than 2^n and even 

than 2^(4n). However, in practice we might be interested in solving 

just a very small subset of these – namely the ones which occurred 

as a reduction of some other practical problem. Sometimes, it could 

be that we are actually interested in solving a single very lengthy 

formula – one for example giving a winning strategy for a complex 

military game position, or an optimal design for a microchip. In 

such a case we can particularize further. When using ideas 1-9 

above (and any others for that matter), we will consider only 

expressions which are formed by a subset of the clauses appearing 

in the original large instance. Thus, the universe of instances for all 

variable sizes is cut to ~2^4n which is a huge reduction. 

Furthermore, the ideas and methods described can now make use 

of structure specific to the original input instance to arrive at a 

solution much faster. The only draw-back is that the algorithm / 

hint pair can be expected to perform adequately only on the 

original input instance set (which may have a single element). This 

nevertheless, can be an acceptable and desirable tradeoff. 
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Section 4.4.2 Kolmogorov Complexity 

Problems which in the general case are provably incomputable due 

to reduction from Kolmogorov complexity typically relate to string 

compression or have to do with entropy extraction (generating 

more randomness from less such). The two are not unrelated.  

In this subsection we focus our attention on string compression. 

Formulating the problem for practical use in this case involves 

more than just restricting the input size. Formally we consider a 

string compression problem to have the following statement: 

“Given a set of strings of length no more than n0, determine some 

pair of (potentially hinted) algorithms Compressn0 – which takes an 

input string and produces a digest – and Decompressn0 – which 

takes a digest and produces the original string – such that the digest 

of maximum (or average) length is as short as possible (or simply 

“short enough”) and both algorithms belong to Polyn0/Polyn0 (or 

some other acceptable finite complexity class).” 

The above is an adaptation of the original formulation of 

Kolmogorov complexity, which referred to compressing a single 

string by using an algorithm of unbounded complexity (but which 

surely terminates) to produce it. The above formulation allows for 

the input set of strings to contain a single element as well. 

However, in practice it is more likely that a single solution is 

sought which can be used to compress several strings (potentially 

all the strings of length n0). 

Under the above formulation, all ideas from Section 4.4.1 could be 

adapted here as well. The only difference will be in verification – 

as more and more algorithms are considered, performance entails 

not only examining running times but also lengths of generated 

digests. 

Some ideas specific to string compression, formulated in the 

context of finite algorithmics are the following: 

1. Determine short incompressible strings which appear 

as substrings within the input set. It is a well-known 

information theory result that for any length there exist 

incompressible strings. This can be shown via a simple 

counting argument for a binary alphabet. Furthermore, 

the density of incompressible strings is rather large. 

Using this information, one can attempt to “break down” 

the input strings into incompressible “atoms” which can 

then serve as part of a hint to an algorithm which only 

describes how to assemble them together to obtain the 

desired string. Incompressibility within this context does 

not need to be strict. A reduction of less than 3-4 

characters for example could make a large string be 

considered just as well incompressible. 

Note that doing this is incomputable in the general case 

for sufficiently large strings. Nevertheless it is very 

computable within the finite-case formulation above. 

2. Given a list of short strings (atoms) determine a 

method which uses such to build a larger target 

string. One straightforward such method is to break the 

target string into concatenations of atoms and then to 

store only the index of each such for each part. More 

sophisticated methods could involve exploiting 

correlations between contents at different positions (e.g. 

repeat adjacent occurrences of an atom). 

3. Apply ideas 1-2 above recursively, on the digest 

generated by the method in idea 2. This allows further 

compression based on the non-randomness of the pattern 

in which atoms themselves occur within a target string. 

Note that the input for the recursive step is typically 

strictly shorter than the original input – which was 

already compressed by a prior application. The final 

output could then just include a number indicating how 

many times recursion was applied. 

4. Consider space-time tradeoffs in deciding which short 

strings to keep as hint to the solution algorithm and 

how to represent them. Atoms themselves may not 

need to all be kept in their lengthy, full form. While a 

single atom is considered incompressible, a list of several 

may have a more succinct representation than simple 

enumeration of all such. For a binary alphabet, a suffix 

tree or even a simple trie may offer an efficient 

improvement. However, there may be other shorter 

representations which in turn require longer processing 

times to allow extraction of some “k-th atom”. 

5. Exploit randomness. Consider producing methods and 

algorithms which make random choices. In the context of 

decompression, such can produce the desired original 

string only with some probability (e.g. 1/2 or 2/3) – and 

in the other cases other produce something else or exceed 

desired running time. In the context of compression, such 

could produce valid digests only with a certain 

probability. 

6. Consider error-correction codes. In the context of idea 

5 above, consider padding some lengthy atoms using 

error correcting codes. While counterintuitive, this could 

potentially allow for shorter algorithms / digests to be 

generated – since one such need not output a precise 

string, but any of its correctable forms. Furthermore, 

simple detection of errors could be reason for rerunning 

said algorithm automatically for a different random seed, 

thus improving the probability of correct output under 

idea 5. Finally, given some input set of strings, all atoms 

within it might be sufficiently separated in terms of 

Hamming distance. Thus, there may be no need for 

additional padding. An algorithm which only very 

occasionally outputs the correct atom and the rest of the 

time something which is not an atom can be combined 

with an algorithm (like a Deterministic Cover 

Automaton) which simply recognizes the language of 

atoms for the given input string set. 

Finally, all results pertaining to Kolmogorov extractors (entropy 

extractors), polynomial-time randomness (producing outputs which 

are indiscernible from random by any polynomial time algorithm) 

and related topics are relevant and can be further refined to apply 

to this context of finite case formulation. A prominent researcher in 

this field is Prof. Marius Zimand (see [23] or [24]). 

As illustrated in Idea 6 briefly, a related problem to string 

compression is finite language recognition: “Given a set of strings, 

produce an algorithm which can determine if an input string is 

within this set or not.” This related problem is extremely relevant 

to finite algorithmics. Firstly, any decision problem can be 

formulated in terms of determining if an input instance is within 

the set of instances for which the answer to the decision problem is 

“Yes”. In any finite case of any problem, such a set is finite as 

well. A solution to efficiently deciding membership within this set 

solves the original problem. 

In fact, compression of the set of outputs of some problem (e.g. 

3CNF-SAT) on some small finite input universe, such that set 
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membership can be decided efficiently, can and should be 

employed in the course of running automated methods for finding 

its solution for larger input sizes (difficulties). 

The starting point in the case of a decision problem for example, 

can be the Deterministic Finite Cover Automata for the set of 

strings which represent input instances with a “Yes” answer. Using 

such, group membership can be decided very quickly (linearly in 

instance size), however the size of the hint (the actual description 

of the DFCA) can grow too large. Nevertheless, we the author 

consider the relation between DFCAs and acceptable algorithms 

(in terms of running time / hint size / hint generation time) for set 

membership decision problems as a prime candidate for future 

research. We see such research as both general and specific to a 

particular problem domain (e.g. to the set of satisfiable 3CNF-SAT 

formulas over at most n0 variables). 

Section 4.4.3 Integer Factorization 

Factoring large integers can be solved efficiently by quantum 

computers, using Shor’s algorithm [25]. Nevertheless, a similarly 

efficient algorithm for a classical computer is yet to be discovered. 

Integer factorization occurs mainly within the realm of cryptology 

and generally pertains to identifying a prime factor of a large 

semiprime number. Besides adaptation of the ideas from Section 

4.4.1 which can prove useful, an idea specific to this problem is the 

following: 

1. Identify and store “hard” primes. Given a target range 

for the integer to be factored (e.g. 512-bit or 1024-bit 

sized), and some state-of-the-art existent algorithm (e.g. 

Pollard’s Rho algorithm or GNFS, or a combination of 

such), determine what constitutes “hard primes” for it. 

These are prime numbers which, when they appear in the 

composition of an integer to factor, cause the algorithms 

running time to increase drastically. If the number of 

such “hard primes” is relatively small in relation to 

maximum value of the integer to factor, they could all be 

stored. Even if there are relatively many such, ideas from 

Section 4.4.2 could be employed to get a more succinct 

representation of this set, allowing it to be enumerated. 

The above idea, steams from the following anecdotal empirical 

experience of the author. Many years ago, he participated in an 

open factorization challenge (which was part of a larger computer 

science contest), which asked contestants to factor each of 10 large 

numbers within a week. The author encountered the following 

situation: The first 7 were relatively easy to factor and he managed 

to factor the 8th and the 9th as well using some more advanced 

techniques. However, the 10th one seemed unbreakable. At that 

point we considered the following question: “How could the 

problem settlers have come up with such a hard case in such short 

a time [it was known to him that they themselves had only about 

one week to prepare the challenge]?”. Given this, he tried the 

following: He searched on the internet for the primes which 

showed up as factors for the other two hard cases – namely the 8th 

and the 9th. He then identified a small number of short lists of 

primes which featured them. He then used a computer program to 

try out each of the primes on those lists against the hard 10th 

challenge case. To his delight, this worked. The “hard prime” for 

the 10th case was in fact taken from a list on the internet. This 

experience above serves to indicate that generating “hard primes” 

is no easy task. Like with 3CNF-SAT, most large instances of 

Integer Factorization are easy to solve. Those which remain may 

be hard due to the presence of some of these hard primes in the 

solution. Identifying all such and, if there are not that many, and 

including them as hint to some hinted algorithm, might make 

integer factorization easy for all practical sizes even for a classical 

computer. 

Discussion 

We have discussed the significance and implications of most 

results and theory throughout the paper, close to the place of their 

introduction. In this section we present a few ideas of more general 

significance. 

The results in Section 4 serve to illustrate that analyzing a problem 

for the finite case, rather than on the sometimes more difficult 

general case holds value. Problems which are very hard (or even 

impossible) to solve in the general case may have acceptable finite 

case algorithms. Furthermore, the search for suitable algorithms in 

the finite case can be automated or sped up using computers. 

The introduction of finite algorithms allows us, as humans to 

reason about hard problems differently. Ultimately, within the 

framework introduced in this paper one could ultimately prove 

that: 

1. P <> NP. For example by proving that for any large 

enough finite input size upper bound n0, the length of the 

shortest hint for a Polyn0 time algorithm which solves it 

is strictly larger than for n0-1. This does not necessarily 

entail that NP-Complete problems could not be solved in 

practice. 

2. P = NP. For example by providing a polynomial time 

algorithm which constructs a hint for any finite input size 

upper bound n0 for an algorithm of bounded PolyRank 

time complexity. This could be further restricted to 

practical significance, by providing a Polyn0 algorithm 

for hint construction for a Polyn0/Polyn0 algorithm. 

3. P = NP or P <> NP but we really do not care about 

the distinction for practical purposes. This could be 

either because an efficient algorithm and hint have been 

identified for all practical bounds (favorable case) or 

because it has been proven that the shortest hint size for 

most practical cases is too large (unfavorable case). In 

the former situation, if P<>NP this essentially happens 

for input sizes outside of humanity’s practical zone of 

interest, while in the latter, if P=NP this again happens 

for too large input sizes, such that the drop in complexity 

in the general case is in fact of no practical use. 

The same discussion as above applies to the study of relationships 

between other complexity classes (such as between P and 

PSPACE). 

The results and techniques presented in this paper can be applied 

not only to hard problems (PTR and above), but also to those 

which are relatively easy but for which we would like to identify 

even more efficient algorithms (TR). One such candidate is 

multidimensional range querying. An algorithm which breaks the 

“curse of dimensionality” – if such exists – could be sought and 

found using the same approaches. 

Ultimately, we expect the change in mindset and in focus of 

research resulting from rephrasing a problem in terms finite 

algorithmics theory to lead, in the near future, to practical solutions 

for some of the hardest computer science problems which have 

been haunting humanity for many decades. 
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Conclusion and further research 

Throughout this paper we have identified several avenues which 

we consider prime targets of future research. We briefly recap them 

here: 

1. Examining relationships between different finite 

complexity classes. This can pertain to relationships 

between different finite complexity classes for the same 

problem domain (e.g. for different n0 upper bounds) or 

between different problem domains (e.g. resulting from 

reduction of one problem to another). Also, they could be 

unspecific pointing out interesting results for finite 

complexity in terms of natural functions in general 

without the need for them to represent something 

specific. 

2. Examining relationships between finite complexity 

classes and general case complexity. Similarly this can 

occur within a problem domain, connect several problem 

domains or be unspecific, pertaining only to natural 

functions in general. 

With regard to the these, we ask simply “What are interesting 

results which fall into these categories?”. We presented a few 

elementary ones ourselves in this paper, in Section 4.1.  

In addition to the above, we propose the following directions for 

future research, which seem to us important: 

1. Investigating relationships between Finite Automata 

and efficient Hinted Algorithms for the finite case. 

Limiting input size, running time and usable space to 

some finite bound allows a problem to be solved within a 

computational model less powerful than a Turing 

machine. Namely, any algorithm on a classical computer 

which has bounded memory size and is limited to a 

maximum number of steps to perform (finite case 

complexity) can be accurately represented by a finite 

automaton over a ternary language: The states of the 

automaton represent the memory configurations which 

can be encountered during execution, transitions 

correspond to the small changes an algorithm can 

perform in one step leading from one memory 

configuration to another and the ternary language 

represents the clock ticks which the algorithm consumes. 

The first part of an input word is the binary 

representation of the input instance for the original 

problem, and all the rest are 3s. If the automaton accepts 

on such a constructed input, so does the corresponding 

classical computer algorithm. Ironically enough, not all 

automatons defined in this fashion have corresponding 

classical computer algorithms – a transition within an 

automaton can be from a corresponding memory state to 

any other, while for a classical computer a transition (one 

operation) only changes one word of memory (in the 

RAM model) at a time - thus it can point only to very 

similar states. While direct automaton construction and 

minimization based on the observation above may not 

lead to a time-wise feasible approach to solving a 

problem, conceptually it can offer deep insights. The 

relationship between the two computational models for 

the finite case warrants further research. 

2. For a specific problem domain investigate the growth 

of minimum hint size as the finite upper bound 

increases. The fact a problem is limited to the finite case 

does mean the upper input size (difficulty) bound should 

remain fixed during analysis. While for practical 

applications existent at some moment such bound is a 

definite, effectively reaching it may entail examining 

correlations between solutions for smaller ones. One very 

interesting question is the following: “Given a problem 

Prob and some target finite complexity class for an 

efficient algorithm, how does the size of the shortest hint 

vary with the upper input size (difficulty) limit n0?” For 

general case solution, the answer is very simple: “It is 0 

for all cases”. Finite algorithmics however allows further 

nuance. 

Finally we propose a specific, explicit question framed within the 

theory of finite algorithmics which, when answered, will give the 

strongest indication ever - if not a proof – for deciding the classical 

P=NP problem. 

Consider some fixed, sufficiently expressive hinted algorithm. 

Such an algorithm can simply be one which receives, as part of the 

hint, the index of a more elaborate algorithm from the finite family 

described in Approach 26 and then runs such on the remaining hint 

and input instance. The family in Approach 26 can be considered 

to include as “predefined types” all popular data-structures and 

solvers for general case problems which are commonly known in 

literature as of November 2019. 

Given the above fixed algorithm, answer the following question: 

“What is the minimum length of some required hint, which 

allows it to decide satisfiability for any 3CNF-SAT formula 

over at most 2^20 variables within running time Poly2^20?”. 

Then answer the same question for 2^30 and 2^40. 

Firstly, if the hint sizes are small enough, answering these 

questions constructively will give the most efficient method for 

solving 3CNF-SAT in practice. 

Secondly, by examining how the shortest hint size required grows 

for the 2^20, 2^30 and then for the 2^40 upper bounds on number 

of variables, one can get the strongest indication – if not even a 

sufficient proof – with regard to whether P=NP. If the hint sizes 

increase (at least significantly), this is a very strong indication that 

P<>NP. In fact, the only way this could happen and still have 

P=NP is if the additional sophistication in the structure of the 

3CNF-SAT with an increase in the number of variables, drops to 0 

beyond a certain finite bound (similarly to that of GROUPOP 

beyond the order of the Monster Group) above 2^40. We, the 

author, believe it to be extremely unlikely for 3CNF-SAT to 

behave so. Conversely, if hint sizes do not (at least no 

significantly) increase this would be a crushingly strong indication 

that P=NP. 

Finally, if we were asked to take a guess, we would expect the 

answer to the above question to indicate a rather slow, but positive 

growth rate. Most likely on the order of Linearn0 or Polyn0. This 

would indicate that NP is outside P, however it would place it well 

within Polyn0 or SemiPolyn0 in practice. Furthermore, depending on 

how difficult computing such a hint proves to be in the general 

case, it place NP outside P but below EXPTIMP. 

We conclude the paper here 
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A. Annex 1 

The tables below detail the maximum estimated tractable difficulty 

for the finite complexity classes. It asserts 10 MFlop/s for single-

core on commodity hardware (from empirical Codeforces.com 

experience), 83 TFlops/s for single-core on super-computer grade 

hardware, a number of 2 million cores for the fastest super-

computer and 60 million for all the TOP500 super-computers 

combined (data compiled directly from 

https://www.top500.org/lists/2019/06/). The values for multicore 

architectures (supercomputers) assume the algorithm can be 

parallelized perfectly. Furthermore, these bounds are for a classical 

computer. Where random data is required, depending on its quality, 

generating one such word (or bit) may take longer than 1 Flop. 

Also, no similar bounds are provided for a quantum computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ExpRank = 1. For Exp 

in general, divide 

values by 8. 

Single Core 

Commodity 

Single Core Super 

Computer 

Top Super 

Computer 

Top 500 Super 

Computers combined 

1 second 16 32 46 50 

1 minute (60s) 20 36 51 54 

1 hour (3600s) 24 40 55 58 

1 month (2.6 MS) 31 47 61 65 

1 year (31.5 MS) 33 49 64 67 

10 years (315 MS) 36 51 66 70 

100 years (3.15 TS) 38 54 68 72 

SemiPoly Single Core 

Commodity 

Single Core Super 

Computer 

Top Super 

Computer 

Top 500 Super Computers 

combined 

1 second 35 179 568 725 

1 minute (60s) 56 253 761 963 

1 hour (3600s) 86 353 1010 1264 

1 month (2.6 MS) 162 580 1553 1923 

1 year (31.5 MS) 201 693 1818 2241 

10 years (315 MS) 245 814 2096 2578 

100 years (3.15 TS) 295 955 2410 2953 

https://www.top500.org/lists/2019/06/
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For LogRank <= 1+log(log(n)) and Const the growth rate allows inputs of almost any practical size to be solved in a very short amount of time, 

usually within much less than a second. Of course, sometimes in practice the exact LogRank mattes – for example when searching for a suitable 

value within an exponential universe of alternatives. 
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