

Transformation from Traditional To Contemporary Techniques in Sand Filter Bed: A Short Review

Sivamani Selvaraju¹, Raja Thiruvengadam²

^{1,2}College of Engineering and Technology, University of Technology and Applied Sciences, Salalah, Oman.

*Corresponding Author :Sivamani Selvaraju

“College of Engineering and Technology, University of Technology and Applied Sciences, Salalah, Oman”

Received: 13.04.2025

Accepted: 02.05.2025

Published: 14.05.2025

Abstract: Sand filtration systems have long served as a cornerstone in water and wastewater treatment, offering a reliable and cost-effective method for removing suspended solids and improving water quality. Recent advances in materials science, engineering configurations, and digital technologies have significantly transformed the design and efficiency of sand filter beds. This review explores the evolution of materials used in modern sand filter beds, including alternative media such as crushed glass, zeolites, and biochar, which offer enhanced filtration performance and sustainability. It examines innovative configurations and techniques that improve filtration rates, reduce maintenance, and optimize space utilization. The integration of intelligent digital technologies—such as real-time monitoring, predictive maintenance, and data-driven optimization—is discussed as a key enabler of smart filtration systems. The review also highlights automation strategies and control systems that enhance operational efficiency and reduce labor intensity. Additionally, the emergence of hybrid systems that combine sand filtration with complementary technologies such as membrane filtration, UV disinfection, and advanced oxidation processes is analyzed for their potential in achieving higher treatment standards. Collectively, these advancements are shaping a new generation of sand filter systems that are more efficient, adaptive, and sustainable. The paper concludes by identifying research gaps and proposing future directions for innovation in this essential area of water treatment technology.

Keywords: *Sand filter beds, Materials, Configurations, Integration of intelligent digital technologies, Automation, Hybrid technologies.*

Introduction

Sand filter beds have long been a fundamental component of water and wastewater treatment, offering a simple yet effective method for removing impurities. Traditional sand filter beds primarily rely on layers of sand and gravel through which water percolates, allowing suspended solids and contaminants to be removed by physical filtration and biological activity. These systems have been widely used due to their low operational costs and ease of maintenance. However, with increasing water pollution and stringent quality requirements, there has been a shift towards contemporary techniques that improve efficiency, durability, and sustainability [1]. Traditional sand filters are classified into slow sand filters, rapid sand filters, and intermittent sand filters. Slow sand filters operate at a low filtration rate and depend on biological activity in a surface layer known as the *schmutzdecke* to break down organic matter and trap pathogens. Rapid sand filters, on the other hand, function at higher flow rates and require periodic backwashing to remove accumulated debris. Intermittent sand filters, commonly used in small-scale wastewater treatment, allow water to pass through the filter bed in cycles. While these systems have been effective, they often struggle with clogging, require frequent maintenance, and may not efficiently remove emerging contaminants such as heavy metals and pharmaceutical residues.

Recent advancements have introduced innovative materials and design modifications that enhance the performance of sand filter beds. The use of engineered filter media such as biochar, zeolites, activated carbon, and nanomaterials has significantly improved the adsorption of pollutants. Additionally, modified sand coated with metal oxides has been developed to enhance the removal of heavy

metals and pathogens [2]. Contemporary designs also incorporate multi-layered filter beds, combining traditional sand with materials like ceramic granules, glass beads, and polymeric resins to achieve superior filtration efficiency. Furthermore, hybrid systems that integrate sand filtration with adsorption and biological treatment processes have been developed to address a wider range of contaminants. Technological innovations have further transformed sand filtration by integrating automation and smart monitoring systems. IoT-enabled sensors can now track parameters such as turbidity, flow rate, and contamination levels in real time, allowing for optimized performance and early detection of filter inefficiencies. Automated backwashing systems have reduced manual labour requirements and extended the operational lifespan of filters. Additionally, artificial intelligence (AI) and machine learning algorithms are being employed to predict system performance, optimize filtration cycles, and support decision-making in wastewater treatment operations. Another notable advancement is the integration of renewable energy sources, such as solar-powered filtration units, which enhance sustainability and expand accessibility in off-grid regions.

Several research gaps remain despite these abovementioned advancements. The scalability and cost-effectiveness of these modernized sand filters need further study, particularly for large-scale applications. Additionally, while new filter materials have shown great potential, their long-term environmental impact and sustainability require careful evaluation. More research is also needed to optimize hybrid filtration systems, particularly in balancing physical, chemical, and biological treatment processes. Future trends in sand filtration technology are expected to focus on AI-driven optimization, nanotechnology-enhanced filters, and the

use of circular economy principles, such as repurposing waste materials like biochar for filtration. Towards the end, the transformation from traditional to contemporary sand filter beds represents a significant advancement in water treatment technology. By incorporating innovative materials, configurations, techniques, intelligent digital technologies, automation, and hybrid treatment approaches, modern sand filters have become more efficient, sustainable, and adaptable to current water quality challenges. As research and development continue, these systems will play an increasingly vital role in providing clean water while addressing global environmental and resource management concerns.

Materials in Modern Sand Filter Beds

The evolution of sand filter beds from traditional to contemporary designs has been driven by advancements in materials science. While conventional systems relied primarily on natural sand and gravel, modern sand filters incorporate engineered and composite materials that enhance filtration efficiency, increase contaminant removal, and improve the overall sustainability of water treatment processes. These materials are selected based on their physical, chemical, and biological properties, allowing for improved performance in removing suspended solids, heavy metals, organic pollutants, and pathogens [3,4]. One of the most significant advancements in contemporary sand filter beds is the use of modified sand media. Unlike traditional sand, which primarily relies on physical filtration, modified sand is coated with substances such as iron oxides, aluminium hydroxide, or manganese dioxide. These coatings enhance the adsorption capacity of sand, allowing for the effective removal of contaminants like arsenic, fluoride, and heavy metals from water. Additionally, hydrophobic coatings can be applied to improve the removal of oil and grease in industrial wastewater treatment.

Activated carbon is another widely used material in contemporary sand filters due to its high surface area and excellent adsorption properties. When incorporated into filter beds, activated carbon effectively removes organic pollutants, pharmaceuticals, pesticides, and chlorine byproducts from water. It is particularly beneficial in improving taste and odour in drinking water treatment. Additionally, biochar, a sustainable carbon-based material derived from biomass, has gained attention as an alternative to traditional activated carbon due to its lower cost and environmental benefits. In recent years, the integration of zeolites into sand filter beds has significantly improved contaminant removal efficiency [5]. Zeolites are microporous aluminosilicate minerals with a high ion-exchange capacity, making them highly effective in removing ammonia, heavy metals, and certain organic compounds. Their natural affinity for cationic pollutants makes them ideal for wastewater treatment applications, particularly in industries where metal contamination is a concern. Additionally, zeolites have antibacterial properties, further enhancing their role in pathogen removal.

Another innovative material used in contemporary sand filters is ceramic media. Engineered ceramic granules and beads have been introduced as alternatives to sand due to their durability, uniformity, and improved hydraulic performance [6]. Ceramic media offer superior resistance to clogging and can be customized with antimicrobial coatings to enhance pathogen removal. They are particularly useful in decentralized water treatment systems and areas with high sediment loads. Polymeric resins and composite materials have also been incorporated into modern sand filters to

improve specific filtration properties. Ion-exchange resins are used to selectively remove contaminants such as nitrates, sulphates, and phosphates, which are common in agricultural runoff. Additionally, hybrid materials that combine sand with graphene oxide or nanomaterials have shown promise in removing emerging contaminants, including pharmaceuticals and microplastics. These materials offer high adsorption capacity and can be regenerated for extended use, making them a sustainable option for advanced water treatment. In addition to these materials, bio-based and recycled materials are gaining traction in contemporary sand filter bed designs. For instance, waste-derived materials such as coconut shell biochar, crushed glass, and recycled tire granules are being explored as alternative filter media. These materials provide cost-effective and environmentally friendly solutions while reducing reliance on virgin materials. Furthermore, the use of naturally occurring materials such as diatomaceous earth and volcanic ash enhances filtration capabilities by providing fine pore structures that improve contaminant retention. Towards the end, contemporary sand filter beds utilize a diverse range of advanced materials to enhance filtration efficiency, durability, and sustainability. From modified sand and activated carbon to zeolites, ceramic media, polymeric resins, and bio-based alternatives, these materials play a crucial role in modernizing water treatment processes. As research continues, the development of more cost-effective, regenerative, and environmentally friendly filter media will further advance the capabilities of sand filtration systems in addressing global water challenges.

Configurations in Contemporary Sand Filter Beds

The configuration of contemporary sand filter beds has evolved significantly to enhance filtration efficiency, longevity, and adaptability to various water treatment applications. Unlike traditional sand filters, which typically feature a simple layered arrangement of sand and gravel, modern configurations incorporate innovative structural designs, optimized media layering, and advanced flow mechanisms to improve contaminant removal and reduce operational challenges such as clogging and frequent backwashing. One of the key advancements in contemporary sand filter bed configuration is the multi-layered filtration structure. Modern filters use a combination of coarse gravel, fine sand, and specialized filtration media such as activated carbon, zeolites, and biochar. This layered arrangement enhances the removal of suspended solids, organic pollutants, and dissolved contaminants [7,8]. The bottom layers, often composed of coarse materials, provide support and facilitate proper drainage, while the upper layers, consisting of finer media, trap smaller particles and improve water clarity. Another important configuration is the vertical and horizontal flow arrangement. Traditional sand filters often rely on gravity-driven vertical filtration, where water percolates downward through the filter media. However, contemporary designs also incorporate horizontal flow configurations, which allow water to move laterally through the filter bed. Horizontal flow sand filters are particularly effective in treating wastewater and stormwater runoff, as they promote longer contact times between water and filtration media, enhancing pollutant removal.

The subsurface drainage system is another crucial aspect of modern sand filter bed configurations. Advanced filters use perforated pipes, underdrain systems, or geotextile membranes to facilitate uniform water distribution and prevent clogging. Some systems incorporate air-scouring mechanisms to loosen

accumulated particles and improve backwashing efficiency, extending the lifespan of the filter media [9]. Modular and compartmentalized configurations have also gained popularity in contemporary sand filter beds. These designs involve dividing the filtration system into multiple chambers, each optimized for specific treatment processes. For example, one chamber may focus on sediment removal, while another is designed for biological filtration or chemical adsorption. Modular designs offer flexibility, allowing for easy maintenance, scalability, and integration with other water treatment technologies such as membrane filtration or UV disinfection. Additionally, the hydraulic loading rate and depth optimization in modern sand filter bed configurations ensure improved performance. Contemporary designs calculate the filter depth and surface area to balance filtration efficiency with operational feasibility. Deeper sand beds provide greater contaminant removal capacity, while optimized hydraulic loading rates prevent excessive clogging and ensure consistent filtration performance. Towards the end, contemporary sand filter bed configurations incorporate multi-layered media, innovative flow arrangements, advanced drainage systems, modular designs, and optimized hydraulic parameters to enhance water treatment efficiency. These improvements address limitations of traditional designs, making modern sand filtration systems more reliable, sustainable, and adaptable to various applications, including drinking water purification, wastewater treatment, and industrial water reuse.

Techniques in Contemporary Filter Beds

The advancement of sand filter beds has led to the development of contemporary techniques that enhance filtration efficiency, extend filter lifespan, and improve adaptability to diverse water treatment needs. Unlike traditional sand filters that rely primarily on physical filtration through layers of sand and gravel, modern techniques incorporate advanced filtration mechanisms, automation, and hybrid treatment approaches to achieve superior contaminant removal. These contemporary techniques optimize performance by addressing issues such as clogging, limited pollutant removal, and high maintenance requirements. One of the key innovations in contemporary sand filter beds is the multi-layered filtration technique. Instead of using only sand and gravel, modern filters employ layers of different media, such as activated carbon, zeolites, ceramic granules, and polymeric resins [10]. Each layer is designed to target specific contaminants—coarse materials remove large, suspended particles, while finer materials capture smaller pollutants and dissolved substances. This approach improves filtration efficiency and reduces the frequency of backwashing by distributing the contaminant load more effectively across different layers. Another significant advancement is the integration of adsorption-enhanced filtration. By incorporating materials like biochar, zeolites, and activated carbon into the filter bed, contemporary sand filters can remove dissolved organic compounds, heavy metals, and micropollutants that traditional sand alone cannot capture. Adsorption-based filtration is particularly useful in wastewater treatment and drinking water purification, where contaminants such as pesticides, pharmaceuticals, and industrial chemicals need to be effectively removed.

The use of biologically active sand filters (BASF) represents another major technological improvement. Unlike conventional sand filters, which primarily rely on physical straining, BASF supports microbial activity within the filter bed. Beneficial bacteria

colonize the sand surface and break down organic matter, nitrates, and other pollutants through biological processes. This technique is widely used in decentralized wastewater treatment and drinking water systems, as it provides a natural and sustainable method for contaminant removal without requiring chemical additives. In addition to material and biological enhancements, automation and smart monitoring systems have transformed sand filtration technology [11]. Contemporary sand filters are now equipped with IoT-enabled sensors that track key parameters such as turbidity, flow rate, and contaminant levels in real time. Automated backwashing systems help maintain optimal performance by cleaning filter media when necessary, reducing manual labour and water wastage. Furthermore, artificial intelligence (AI) and machine learning algorithms are being used to predict system performance, optimize filtration cycles, and detect early signs of filter clogging or malfunction.

Hybrid filtration systems that combine sand filtration with other treatment methods, such as membrane filtration, electrocoagulation, and UV disinfection, have also gained popularity. These systems provide a multi-barrier approach to water treatment, enhancing the removal of bacteria, viruses, and chemical contaminants. For example, sand filters integrated with ultrafiltration membranes can improve pathogen removal, while electrocoagulation-assisted sand filtration enhances the elimination of heavy metals and suspended solids. Another emerging technique is the self-cleaning sand filter system, which eliminates the need for manual backwashing by using mechanical agitation or air scouring to dislodge trapped particles. This technology is particularly useful in large-scale water treatment plants and industrial applications where continuous filtration is required [12]. Self-cleaning mechanisms improve operational efficiency and extend the lifespan of the filter media. Towards the end, contemporary sand filter beds utilize a combination of advanced techniques to improve water treatment efficiency, sustainability, and automation. Multi-layered filtration, adsorption-enhanced media, biologically active filters, smart monitoring systems, hybrid treatment approaches, and self-cleaning mechanisms have significantly enhanced the performance of sand filtration technology. As research continues, the integration of nanotechnology, AI-driven optimization, and renewable energy-powered filtration systems will further revolutionize the field, making sand filters more adaptable to future water treatment challenges.

Integration of Intelligent Digital Technologies in Contemporary Sand Filter Beds

The integration of emerging technologies such as Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), and the Internet of Things (IoT) has revolutionized contemporary sand filter beds, making them more efficient, autonomous, and adaptable [13]. Traditional sand filtration systems relied on manual operation and periodic maintenance, often leading to inefficiencies such as clogging, excessive water wastage, and inconsistent filtration performance. By leveraging these advanced technologies, modern sand filters can achieve real-time monitoring, predictive maintenance, and adaptive filtration control, significantly improving water treatment outcomes. One of the most impactful innovations is the use of IoT-enabled smart monitoring systems in sand filters. IoT sensors continuously track key water quality

parameters such as turbidity, pH, flow rate, temperature, and contaminant levels. These sensors transmit data to a centralized system, allowing operators to monitor filtration performance remotely. Automated alerts notify operators when performance deviates from optimal conditions, enabling proactive maintenance and reducing downtime. Additionally, IoT-based remote monitoring is particularly useful for decentralized water treatment systems, where physical inspection is challenging.

AI and ML play a crucial role in predictive analytics and optimization of sand filter beds. Traditional systems often require periodic backwashing to remove accumulated impurities, but AI-driven models can analyse historical and real-time data to determine the most efficient backwashing schedule [14]. Machine learning algorithms can predict clogging trends based on water quality variations, optimizing filtration cycles to enhance efficiency and reduce water and energy consumption. Additionally, AI-powered anomaly detection helps identify potential filter failures before they occur, preventing system breakdowns and ensuring continuous operation. Deep Learning (DL), a subset of ML, has further advanced sand filtration technology by improving pattern recognition and adaptive control. DL algorithms, trained on vast datasets of water quality parameters, can detect subtle changes in filtration performance that might go unnoticed with traditional monitoring methods. These models enable automated decision-making, adjusting filtration parameters in real-time based on contamination levels. For example, DL-driven adaptive filtration systems can modify flow rates, switch between different filter media, or trigger backwashing at the optimal moment to maintain high-quality filtration. AI and ML are also being integrated with computational fluid dynamics (CFD) simulations to enhance the design of sand filter beds. By analysing how water flows through different filter media configurations, AI-driven simulations help engineers optimize filter design for improved contaminant removal and reduced clogging. This approach accelerates innovation in filter bed structures, leading to more efficient and sustainable filtration systems.

Hybrid filtration systems that combine sand filtration with AI-assisted electrocoagulation, UV disinfection, and membrane filtration are also gaining traction. AI algorithms optimize the synergy between these treatment methods, ensuring that energy and resources are utilized efficiently. This multi-barrier approach enhances pathogen removal and chemical pollutant reduction, making it ideal for drinking water purification and wastewater treatment. The integration of AI, ML, DL, and IoT has also contributed to automated self-cleaning sand filters. Traditional sand filters require periodic manual backwashing, which consumes water and energy. AI-driven self-cleaning systems use real-time sensor data and predictive analytics to determine the optimal backwashing schedule, reducing water wastage while maintaining filtration efficiency [15]. Some advanced designs even use AI-controlled air scouring and mechanical agitation techniques to dislodge trapped particles without disrupting filtration operations. Towards the end, AI, ML, DL, and IoT have transformed contemporary sand filter beds, making them more intelligent, efficient, and self-sustaining. These technologies enable real-time monitoring, predictive maintenance, adaptive filtration control, and AI-driven design optimization, significantly improving water treatment processes. As these technologies continue to evolve, their integration into sand filtration systems will enhance sustainability, reduce operational costs, and ensure access to clean water in both urban and remote areas.

Automation In Contemporary Sand Filter Beds

Automation has significantly transformed the operation and management of contemporary sand filter beds, enhancing efficiency, reliability, and sustainability in water treatment processes. Unlike traditional systems that relied heavily on manual monitoring and maintenance, modern sand filter beds incorporate automated control mechanisms that optimize filtration performance, reduce operational costs, and minimize human intervention. One of the key aspects of automation in sand filter beds is real-time monitoring and control systems. These systems use sensors to continuously measure critical parameters such as turbidity, flow rate, pressure drop, and filter bed clogging [16]. The collected data is transmitted to centralized control units, where automated algorithms analyse the information and make necessary adjustments. This ensures that the filter operates at optimal efficiency, reducing the risk of failures and minimizing maintenance requirements.

Automated backwashing systems are another crucial innovation in contemporary sand filter beds. Traditional filters require manual intervention to initiate the backwashing process, which can lead to inefficient water usage and increased downtime. In automated systems, sensors detect the level of clogging in the filter media and trigger backwashing only when necessary. Some advanced systems utilize air-scouring mechanisms or pulsed backwashing to remove trapped particles more efficiently while conserving water and energy [17]. The integration of programmable logic controllers (PLCs) and supervisory control and data acquisition (SCADA) systems has further enhanced automation in sand filter beds. These technologies enable remote monitoring and control of filtration systems, allowing operators to manage multiple filter units from a central location. SCADA systems also provide historical data analysis, helping to identify trends and optimize operational parameters for improved performance.

Artificial Intelligence (AI) and Machine Learning (ML) are also playing an increasing role in automation. AI-driven models analyse historical and real-time data to predict maintenance needs, optimize filtration cycles, and detect anomalies in system performance. For example, predictive analytics can forecast when filter media will require replacement, preventing unexpected failures and ensuring uninterrupted operation. Additionally, IoT-enabled automation allows smart filter beds to be connected to cloud-based platforms, providing real-time updates and alerts to operators via mobile applications. This is particularly beneficial for decentralized water treatment systems, where on-site monitoring may not always be feasible. IoT connectivity ensures that filtration systems can be managed remotely, improving response times and reducing the need for frequent physical inspections [18]. Towards the end, automation in contemporary sand filter beds has revolutionized the efficiency and reliability of water treatment processes. Real-time monitoring, AI-driven predictive maintenance, automated backwashing, and IoT-enabled control systems have significantly reduced operational costs and improved water quality. As automation technologies continue to advance, sand filtration systems will become even more intelligent, self-sustaining, and adaptable to diverse environmental and industrial applications.

Hybrid Technologies in Contemporary Sand Filter Beds

Hybrid technologies in contemporary sand filter beds integrate multiple filtration and treatment methods to enhance efficiency, improve water quality, and address a broader range of contaminants. Traditional sand filters rely primarily on physical filtration, but hybrid systems incorporate advanced chemical, biological, and technological enhancements to optimize performance, reduce maintenance, and extend operational life. These hybrid approaches are particularly useful in treating complex water sources such as wastewater, industrial effluents, and drinking water supplies. One of the most common hybrid approaches is the integration of activated carbon with sand filtration. Activated carbon is highly effective in adsorbing organic contaminants, chlorine, pesticides, and heavy metals. When combined with sand filtration, this system not only removes suspended solids but also significantly improves the removal of dissolved pollutants and enhances the overall water purification process. This method is widely used in municipal water treatment and industrial wastewater management. Another widely adopted hybrid configuration is sand filtration coupled with membrane filtration technologies such as ultrafiltration (UF), nanofiltration (NF), or reverse osmosis (RO). Sand filters serve as a pre-treatment stage, removing larger particles before water passes through membrane filters, which can eliminate finer contaminants, including bacteria, viruses, and dissolved salts. This hybrid approach extends membrane lifespan, reduces fouling, and improves the efficiency of advanced filtration systems [19]. Biologically active sand filters (BASFs) represent another innovative hybrid technology. These systems incorporate microbial communities within the sand media to break down organic matter, ammonia, and other pollutants through biological degradation. This combination of physical filtration and biological treatment enhances the removal of contaminants such as nitrogen and phosphorus, making BASFs particularly effective for wastewater treatment and groundwater remediation.

Hybrid sand filter beds also integrate electrocoagulation and oxidation technologies to enhance contaminant removal. Electrocoagulation introduces an electric current to precipitate dissolved metals and organic compounds, making them easier to remove through sand filtration. Similarly, oxidation methods such as UV treatment or ozonation break down organic pollutants and disinfect water before or after filtration. These hybrid technologies are especially useful for treating industrial effluents and ensuring safe drinking water supplies. Another emerging trend is the use of AI-driven automation and IoT-enabled monitoring in hybrid sand filter systems. Smart sensors continuously track water quality parameters and optimize filtration performance in real-time. AI-based predictive analytics help determine when to initiate backwashing, replace media, or integrate additional treatment steps. IoT connectivity enables remote monitoring, reducing the need for frequent on-site inspections and improving overall efficiency. Towards the end, hybrid technologies in contemporary sand filter beds combine physical, chemical, and biological treatment methods to create more effective and sustainable water filtration solutions. These integrated approaches enhance contaminant removal, extend filter lifespan, and optimize water treatment processes for various applications, from municipal water supply to industrial wastewater management [20]. As technological advancements continue, hybrid filtration systems will play a crucial role in ensuring clean and safe water for diverse needs.

Conclusion

Contemporary sand filter beds have undergone a remarkable transformation from their conventional counterparts, propelled by advancements in materials, system configurations, and digital innovation. The adoption of novel filter media has enhanced filtration efficiency and environmental compatibility, while new structural and operational techniques have improved flow dynamics and system scalability. The integration of intelligent digital technologies—including sensor networks, automated control systems, and AI-driven analytics—has enabled real-time monitoring and adaptive system management, aligning sand filtration systems with the goals of smart water infrastructure. Automation further contributes to process reliability and cost-effectiveness, reducing the need for manual intervention. Moreover, hybrid technologies represent a promising frontier, blending traditional sand filtration with advanced treatment methods to address complex water quality challenges. Despite these advances, further research is needed to optimize system integration, reduce operational costs, and validate long-term performance under variable field conditions. As the demand for resilient and sustainable water treatment solutions continues to grow, modern sand filter beds stand poised to play a vital role in future water infrastructure strategies.

References

1. Campos, L. C., Su, M. F. J., Graham, N. J. D., & Smith, S. R. (2002). Biomass development in slow sand filters. *Water research*, 36(18), 4543-4551.
2. Verma, S., Daverey, A., & Sharma, A. (2017). Slow sand filtration for water and wastewater treatment—a review. *Environmental Technology Reviews*, 6(1), 47-58.
3. Logsdon, G. S., Kohne, R., Abel, S., & LaBonde, S. (2002). Slow sand filtration for small water systems. *Journal of Environmental Engineering and Science*, 1(5), 339-348.
4. Li, J., Campos, L. C., Zhang, L., & Xie, W. (2022). Sand and sand-GAC filtration technologies in removing PPCPs: A review. *Science of The Total Environment*, 848, 157680.
5. Bagundol, T. B., Awa, A. L., & Enguito, M. R. C. (2013). Efficiency of slow sand filter in purifying well water. *Journal of Multidisciplinary Studies*, 2(1).
6. Hijnen, W. A., Schijven, J. F., Bonne, P., Visser, A., & Medema, G. J. (2004). Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. *Water Science and Technology*, 50(1), 147-154.
7. Adelman, M. J., Weber-Shirk, M. L., Cordero, A. N., Coffey, S. L., Maher, W. J., Guelig, D., ... & Lion, L. W. (2012). Stacked filters: novel approach to rapid sand filtration. *Journal of Environmental Engineering*, 138(10), 999-1008.
8. Grützmacher, G., Böttcher, G., Chorus, I., & Bartel, H. (2002). Removal of microcystins by slow sand filtration. *Environmental Toxicology: An International Journal*, 17(4), 386-394.
9. Vries, D., Bertelkamp, C., Kegel, F. S., Hofs, B., Dusseldorp, J., Bruins, J. H., ... & Van den Akker, B.

(2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. *Water Research*, 109, 35-45.

10. Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Luo, Z., & Cen, K. (2013). Granular bed filter: A promising technology for hot gas clean-up. *Powder technology*, 244, 93-99.

11. Jegatheesan, V., & Vigneswaran, S. (2005). Deep bed filtration: mathematical models and observations. *Critical Reviews in Environmental Science and Technology*, 35(6), 515-569.

12. Cescon, A., & Jiang, J. Q. (2020). Filtration process and alternative filter media material in water treatment. *Water*, 12(12), 3377.

13. He, W., Luo, T., Chen, F., Sun, X., & Yang, Z. (2025). Downflow and upflow sand filtration for removing turbid particles with diverse morphological and surface-charge characteristics: Comparisons of filtered water quality and head loss distribution. *Separation and Purification Technology*, 354, 128678.

14. Aslan, S., & Cakici, H. (2007). Biological denitrification of drinking water in a slow sand filter. *Journal of hazardous materials*, 148(1-2), 253-258.

15. Mahanna, H., Radwan, K., Fouad, M., & Elgamal, H. (2018). Effect of operational conditions on performance of deep sand filter in turbidity removal. *Trends Tech. Sci. Res*, 2(5), 1-7.

16. Wand, H., Vacca, G., Kuschk, P., Krüger, M., & Kästner, M. (2007). Removal of bacteria by filtration in planted and non-planted sand columns. *Water research*, 41(1), 159-167.

17. Vanotti, M. B., Rice, J. M., Ellison, A. Q., Hunt, P. G., Humenik, F. J., & Baird, C. L. (2005). Solid-liquid separation of swine manure with polymer treatment and sand filtration. *Transactions of the ASAE*, 48(4), 1567-1574.

18. Erickson, A. J., Gulliver, J. S., & Weiss, P. T. (2007). Enhanced sand filtration for storm water phosphorus removal. *Journal of Environmental Engineering*, 133(5), 485-497.

19. Herrera, P., Burghardt, R., Huebner, H. J., & Phillips, T. D. (2004). The efficacy of sand-immobilized organoclays as filtration bed materials for bacteria. *Food Microbiology*, 21(1), 1-10.

20. Barkouch, Y., Flata, K., Ait Melloul, A., Khadiri, M. E., & Pineau, A. (2019). Study of filter height effect on removal efficiency of Cd, Cu, Pb and Zn from water by slow sand filtration. *Desalination And Water Treatment*, 161, 337-342.